Revisiting electric utilities’ efficiency in the Southern African Power Pool, 1998–2009

Keywords: technical inefficiency; vertical structure; density in consumption, control of corruption, load factor

Abstract

This study analyses the determinants of the technical efficiency performance for Southern African Power Pool (SAPP) power utilities in the period 1998-2009, excluding South Africa’s Eskom. The study formulated an explicit model for technical inefficiency by considering the vertical structure of the utilities and the definition of the product, considering the specific characteristics of this sample. It was found that the most significant improvement in the average efficiency of the sample occurred from 2000 to 2002, coinciding with the first SAPP Energy Plan of 2001. Density in consumption, control of corruption and load factor also contributed to the different levels of efficiency. The results provided a new empirical evidence that can be useful for the design of energy policy and incentive regulation.

References

[1] Africa’s Power Infrastructure. Investment, integration, efficiency, 2011. World Bank. https://openknowledge.worldbank.org/handle/10986/2290 [accessed April 2018].
[2] Escribano, A. Guasch, J.L. and Peña, J. 2010. Assessing the impact of infrastructure quality on firm productivity in Africa: cross-country comparisons based on investment climate surveys from 1999 to 2005. World Bank Poli-cy Research Working Paper 5191.
[3] Exclusive interview with Dr Lawrence Musaba, Coordination Centre Manager of the Southern African Power Pool. 2016 (1), ESI-Africa.com. https://www.esi-africa.com/features-analysis/exclusive-interview-with-dr-lawrence-musaba-coordination-centre-manager-of-the-southern-african-power-pool/ [accessed April 2018].
[4] Sebitosi, A.B. and Okou, R. 2010. Re-thinking the power transmission model for sub-Saharan Africa. Energy Policy, 38, 1448-1454. doi.org/10.1016/j.enpol.2009.11.025.
[5] Regional Power Status in African Power Pools. Report. Infrastructure consortium for Africa, 2011. African De-velopment Bank. BP 323-1002 Tunis Belvédère, TUNISIA. https://www.icafrica.org/fileadmin/documents/Knowledge/Energy/ICA_RegionalPowerPools_Report.pdf.
[6] Karekezi, S. and Kimani, J. 2002. Status of power sector reform in Africa: impact on the poor. Energy Policy, 30, 923-945. doi.org/10.1016/S0301-4215(02)00048-4.
[7] Eberhard, A. and Shkaratan, M. 2012. Powering Africa: Meeting the financing and reform challenges. Energy Policy, 42, 9-18. https://doi.org/10.1016/j.enpol.2011.10.033.
[8] Jamasb, T., Newbery, D., and Pollitt, M. 2004. Core indicators for determinant and performance of electricity sector in developing countries. Cambridge Working Paper in Economics, CWPE 0438.
[9] Leme, R.C., Paiva, A.P., Steele Santos, P.E., Balestrassi, P.P. and Lima Galvão, L. 2014. Design of experiments applied to environmental variables analysis in electricity utilities efficiency: The Brazilian case. Energy Econom-ics, 45, 111-119. doi.org/10.1016/j.eneco.2014.06.017.
[10] Estache, A., Tovar, B. and Trujillo, L. 2008. How efficient are African electricity companies? Evidence from the southern African countries. Energy Policy, 36, 1969-1979. doi.org/10.1016/j.enpol.2008.02.011.
[11] Jaunky, V.C. 2013. Divergence in technical efficiency of electric utilities: Evidence from the SAPP. Energy Poli-cy, 62, 419-430. doi.org/10.1016/j.enpol.2013.07.113.
[12] Jamasb, T., Mota, R., Newbery, D. and Pollitt M. 2005. Electricity sector reform in developing countries: A sur-vey of empirical evidence on determinants and performance, World Bank Policy Research Working Paper 3549, World Bank, March, Washington, DC.
http://documents.worldbank.org/curated/en/393231468780575236/Electricity-sector-reform-in-developing-countries-a-survey-of-empirical-evidence-on-determinants-and-performance.
[13] Perez-Reyes Espejo, R. and Tovar, B. 2010. Explaining the inefficiency in electrical distribution companies: the case of Peruvian firms. Energy Economics, 32, 1175-1181. doi.org/10.1016/j.eneco.2010.02.002.
[14] Ramos-Real, F., Tovar, B., Iootty. M., Fagundes de Almeida, E.L. and Queiroz Pinto H. 2009. The evolution and main determinants of productivity in Brazilian electricity distribution 1998-2005: an empirical analysis. Energy Economics, 31, 298-305. doi:10.1016/j.eneco.2008.11.002.
[15] Tovar, B., Ramos-Real, F., Fagundes de Almeida, E.L. 2011. Firm size and productivity. Evidence from the elec-tricity distribution industry in Brazil, Energy Policy, 39, 826-833. doi:10.1016/j.enpol.2010.11.001.
[16] Battese, G.E. and Coelli, T.J., 1995. A model for technical inefficiency effects in a stochastic frontier production for panel data. Empirical Economics, 20, 325-33.
[17] Greene, W. 2005a. Fixed and random effects in stochastic frontier models. Journal of Productivity Analysis, 23, 7-32. doi.org/10.1007/s11123-004-8545-1.
[18] Greene, W. 2005b. Reconsidering heterogeneity in panel data estimator of the stochastic frontier model, Journal of Econometrics, 126, 269-303. doi.org/10.1016/j.jeconom.2004.05.003.
[19] Tovar, B. and Rendeiro Martin-Cejas, R. 2009. Are outsourcing and non-aeronautical revenue important drivers of Spanish airports efficiency? Journal of air Transport Management, 5, 217-220. doi:10.1016/j.jairtraman.2008.09.009.
[20] Chang, V. and Tovar, B. 2014. Drivers explaining the inefficiency of Peruvian and Chilean ports terminals, Transportation Research Part E. Logistics and Transportation Reviews, 67, 190-203. dx.doi.org/10.1016/j.tre.2014.04.011.
[21] Tovar, B, Ramos-Real, F.J. and Fagundes de Almeida, E. L. 2015. Efficiency and performance in gas distribution. evidence from Brazil. Applied Economics Incorporating Applied. Financial Economics, 47, 5390-5406. doi.org/10.1080/00036846.2015.1047093.
[22] Banker, R.D. and Natarajan, R. 2008. Evaluating contextual variables affecting productivity using data envel-opment analysis. Operations Research, 56, 48-58. doi.org/10.1287/opre.1070.0460.
[23] Kuosmanen, T. 2012. Stochastic semi-nonparametric frontier estimation of electricity distribution networks: Application of the stoned method in the Finnish regulatory model. Energy Economics, 34, 2189-2199. doi:10.1016/j.eneco.2012.03.005.
[24] Rodriguez-Álvarez, A. and Tovar, B. 2012. Have Spanish port sector reforms during the last two decades been successful? A cost frontier approach. Transport Policy, 24, 73-82. dx.doi.org/10.1016/j.tranpol.2012.06.004.
[25] Coelli, T. and Perelman, S. 2000. Technical efficiency of European railways: a distance function approach. Ap-plied Economics, 32, 1967–1976. doi:10.1080/00036840050155896.
[26] Tovar, B. and Rendeiro Martin-Cejas, R. 2010. Technical efficiency and productivity changes for Spanish airport: a parametric distance functions approach Transport Research Part E. Logistics and Transportation Reviews, 46, 249-260. doi:10.1016/j.tre.2009.08.007.
[27] Rodríguez-Alvarez, A., Tovar, B. and Trujillo, L. 2007. Firm and time varying technical and allocative efficiency: An application for port cargo handling firms. International Journal of Production Economics, 109, 149-161. doi:10.1016/j.ijpe.2006.12.048.
[28] Thanassoulis, E., 2002. Comparative performance measurement in regulation: The case of English and Welsh sewerage services. Journal of the Operational Research Society, 53, 292-302. DOI: 10.1057/palgrave.jors.2601160.
[29] Pombo, C., and Taborda, R. 2006. Performance and efficiency in Colombia’s power distribution system: effects of the 1994 reforms. Energy Economics, 28, 339-369. doi.org/10.1016/j.eneco.2005.08.001.
[30] Bogetof, P. and Otto, L. 2011. Benchmarking with DEA, SFA and R. International Series in Operations Research & Management Science. Springer-Verlag. New York.
[31] Jara-Díaz, S. and Ramos–Real F.J. 2011. The effect of output specification on the optimal policy design for elec-tric utilities. Journal of Regulatory Economics, 40, 62-81. DOI: 10.1007/s11149-011-9148-1.
[32] Ramos-Real, F. J. 2005. Costs functions and the electric utility industry. A contribution to the debate on deregu-lation. Energy Policy, 33, 69-87. doi.org/10.1016/S0301-4215(03)00200-3.
[33] Jara-Díaz, S, Martínez-Budría, E and Ramos–Real F.J. 2004. Economies of integration in the Spanish electricity industry using a multistage cost function. Energy Economics, 26 995-1013. doi.org/10.1016/j.eneco.2004.05.001.
[34] Martínez-Budría, E., Jara-Diaz S. and Ramos–Real F.J. 2003. Adapting productivity theory to the quadratic cost function: an application to the Spanish electric sector. Journal of Productivity Analysis, 20, 203-229.
[35] Gilsdorf, K., 1994. Vertical integration efficiencies and electric utilities: a cost complementarity perspective. Quarterly Review of Economics and Finance, 34, 261– 282. doi.org/10.1016/1062-9769(94)90027-2.
[36] Gilsdorf, K., 1995. Testing for subadditivity of vertically integrated electric utilities. Southern Economic Journal, 62, 126-138.
[37] Kwoka, J.E., 2002. Vertical economies in electric power: evidence on integration and its alternatives. Interna-tional Journal of Industrial Organization, 20, 653-671. doi: 10.1016/S0167-7187(00)00114-4.
[38] Kaufmann, D. Kraay, A. and Mastruzzi, M. 2010. The worldwide governance indicators: A summary of meth-odology, data and analytical issues. World Bank Policy Research Working Paper 5430. http://papers.ssrn.com/sol3/papers.cfm?abstract_id=1682130.
[39] Kumbhakar, S. and Knox Lovell, C. A. 2003. Stochastic frontier analysis. Cambridge University Press. USA.
[40] Coelli, T. Prasada Rao, D., O'Donnell, C. and Battese, G. 2005. An introduction to efficiency and productivity analysis. Springer Science & Business Media, USA.
[41] SAPP Utility General Information, 2010 Statistics. http://www.sapp.co.zw.
[42] Tovar, B. Jara-Díaz, S. and Trujillo, L. 2003. Cost and production functions in port sector: a literature review. World Bank Working Paper 3123. World Bank.
Views
  • Abstract 38
  • pdf 44
Views and downloads are with effect from 11 January 2018
Published
2020-02-26