ABSTRACT

The endodontic intervention of the mandibular first molar can be challenging. Once root canals or any portion of them remain undiscovered and untreated, the risk of treatment failure greatly increases. The consensus is that mandibular first molars may have three or four main root canals. However, variations have been noted between populations, which include the mid-mesial canal (MM) and the mid-distal canal (MD). Authors have also attempted to classify root canal configurations to identify common patterns for diagnostic and treatment planning purposes. The introduction of micro-computed tomography (micro-CT) to root and canal morphological studies revolutionised observation of complex root canal anatomy in three dimensions and high definition. This paper is the second of two providing an overview of relevant aspects of the internal root morphology of the mandibular first permanent molar. The aim is to provide an overview of relevant aspects of the internal root morphology of the mandibular first molar in different populations. The content is supported by illustrative micro-CT images and a report on clinical cases where anomalies have been treated.

Keywords

Accessory canals, apical deltas, chamber canals, micro-CT, middle-mesial canal, middle-distal canal, root canal configurations

INTRODUCTION

During root canal treatment clinicians aim to remove irreversibly inflamed or infected tissues from the entire root canal system using a combination of mechanical and chemical disinfection techniques.1,2 Treating clinicians find molars particularly challenging to treat due to the complexity of their root and root canal morphology. Aspects of the internal morphology of the root canal can easily be overlooked during the diagnostic phase but, even if they are discovered, they can be challenging to treat. Once root canals or any portion of them remain undiscovered and untreated, the risk of treatment failure greatly increases.2,4

The mandibular first molars are often mistakenly identified as primary teeth, leading to their neglect and an increase of carious pulpal involvement requiring root canal treatment.5 According to the literature, the treatment of human mandibular molar teeth can be quite complex and there are several variants in the number of canals and roots.2,6,7 The consensus is that mandibular first molars may have three or four main root canals.7 Figure 1 depicts different clinical scenarios that may be encountered during treatment of these molars where three or four canals are present.

However, variations have been noted between populations.5-11 Barker et al. and Vertucci and Williams12,13 were some of the first investigators to discover an additional mesial canal in the mesial root; there can also be additional canals in the distal root.14 Authors have also attempted to classify root canal configurations to identify common patterns for diagnostic and treatment planning purposes.1,15,16

Authors used clearing and staining techniques to explore root and canal morphologies13,15 and radiographs.17 More recently, high-resolution three-dimensional (3D) techniques
have been used such as cone-beam computed tomography (CBCT) and micro-computed tomography (micro-CT). Micro-CT revolutionised the way root and root canal morphology are observed with the superior accuracy it offers. The pixel resolution of micro-CT data allows the detection of the finest root canal detail and can also detect calcifications at different levels of the root canal system. Nielsen et al. pioneered this technology in 1995 by describing the root and root canal morphology of a maxillary first molar. Since then it has become a popular method to describe complex morphological features in human dentition. With the use of software (for example Avizo), a tooth can be viewed from different angles, individual components can be isolated and colours can be allocated to the enamel, dentine and pulp to increase diagnostic accuracy.

The aim of this paper is to provide an overview of available literature on the root canal morphology of the mandibular first molar supported by illustrative images and clinical cases. Although a variety of investigative methods are used to report on different populations, the focus is on the use of micro-CT.

The middle-mesial canal (MM)

An additional canal can be present in the mesial root of mandibular first molars. This canal is often found in the mesial root of the mandibular first molar and is important for understanding the root canal anatomy of this tooth.

Figure 1: Different root canal configurations encountered during endodontic treatment of mandibular first molars; (A) Two mesial root canal systems joining in the apical third of the mesial root and a single distal root canal system; (B) Two separate mesial root canal systems and one single distal root canal system with an accessory canal in the apical third of the mesio-lingual (ML) and distal canals (white arrows); (C) Two separate mesial and two distal root canal systems joining in the apical thirds of the mesial and distal roots respectively; (D) Two mesial root canal systems joining in the apical third of the mesial root and two canal systems in the distal root that are separate; (E) Two separate mesial and two separate distal root canal systems; (F) Two separate mesial canals and a distal canal that bifurcates in the apical third (white arrow).

Figure 2: Micro-CT display of a typical mandibular first molar; (A) Virtually extracted right mandibular first molar using Avizo viewed from buccal; (B) Apical view of the same tooth illustrating the benefit of virtual rotation; (C) Virtually extracted pulp with the enamel and dentine removed. Micro-CT images originate from the PhD thesis by the main author for which ethical clearance (reference number: 298/2020) was obtained.
mandibular molars, namely the middle-mesial canal located between the mesio-buccal (MB) and mesio-lingual (ML) canals. The incidence of this type of morphology has been a focus of investigations for years. Authors have reported on the prevalence in different populations ranging anywhere from 0% in a Vietnamese population and as high as 59% in an Indian population. The different percentages noted could reflect the methods of investigation: for example, in an unknown population in the US a prevalence of 11.5% was reported during clinical treatment; a clearing technique in a Pakistani population revealed 3.3% prevalence; 17.2% was reported using a dental operating microscope on extracted teeth in a Brazilian subpopulation; 2.2% was reported in a Chinese population using CBCT; and a clearing and staining technique was used on extracted Sri Lankan first molars and revealed a prevalence of 0.2% for an additional mesial canal.

Figure 3: A clinical case presentation of a mandibular first molar with an MM canal; (A) Pre-operative periapical radiograph of a left mandibular first molar; (B) Access cavity preparation through the ceramo-metal crown; (C) High-magnification view of the mesial aspect of the pulp chamber. Note the dentine ledge (black arrow) and pulp tissue remnants (yellow arrow) in the groove connecting the MB and ML root canal orifices; (D) A size 010 EndoTracker bur (Komet) was used at a speed of 1500rpm under microscope magnification to remove the coronal aspect of the dentine ledge; (E) High-magnification view of the mesial aspect of the pulp chamber after removal of the dentine ledge exposing the orifice of the MM root canal system; (F) Periapical radiograph to determine the length of the three mesial root canal systems; (G) Periapical radiograph to determine the length of two distal root canal systems; (H) Postoperative periapical radiograph after obturation of the five located root canal systems. Note the three separate mesial canals (3-3-3 configuration in mesial root).

Figure 4: MM root canal configurations encountered during clinical management of mandibular first molars in South African individuals; (A) Postoperative periapical radiograph after obturation of five root canal systems in a right mandibular first molar. Note that the three separate mesial root canal systems join in the apical third of the root to exit in a combined apical foramen (3-3-1 configuration in mesial root); (B) Postoperative periapical radiograph after obturation of five root canal systems in a right mandibular first molar. Note that the MB and MM root canal systems join in the apical third of the root (white arrow) to exit in a combined apical foramen, while the ML canal system remains separate (3-3-2 configuration in mesial root); (C) Postoperative periapical radiograph after obturation of five root canal systems in a right mandibular first molar. Note that the ML and MM root canal systems join in the middle third of the root (white arrow) to exit in a combined apical foramen, while the MB canal system remains separate (3-2-2 configuration in mesial root); (D) High-magnification view of the mesial aspect of the pulp chamber of a left mandibular first molar. Three mesial root canal systems were located; the MB and MM orifices are very close together (arrow) and joined as one canal in the coronal third of the root.
In a more recent global study, Hatipoglu et al. invited 15 countries to participate in a CBCT study on the prevalence of the MM canal. Although CBCT devices did vary, this study reduced the possible variable of using different methodologies to identify the MM canal. Their findings were: Poland 1%, Germany 15%, Croatia 1%, Portugal 4%, Turkey 8%, Kazakhstan 5%, Pakistan 8%, India 10%, Malaysia 2%, Saudi Arabia 13%, Yemen 2%, Libya 23%, Jordan 2%, South Africa 2% and Egypt 1%.

Only a few authors have reported on the prevalence of the MM canal in African populations. In general the MM canal is either absent or has a low prevalence in African groups: no MM canal was found in Senegalese, Ugandan and Tanzanian populations using a clearing and staining technique. In a Kenyan study a prevalence of 0.5% was reported, 1% in an Egyptian using CBCT and 20% in a CBCT study from South Africa. Two African groups presenting with a higher prevalence were Arabs in Libya (23%) and a mixed South African group (20%).

Case reports describing the clinical management of this additional root canal are also available. Figure 3 illustrates the clinical procedure to remove the dentine ledge and uncover the middle mesial canal system on a mandibular first molar. Figure 4 depicts more examples of MM canal configurations treated in South African individuals.

Micro-CT studies, which are expected to detect MM canals more accurately, are scarce. Although higher prevalences are reported using this technique than with other techniques, results vary even within one country (Table I). For example, in Brazilian micro-CT studies figures of 7.7% and 22.1% are reported. The demographics of the individuals in these studies are unclear, but it seems that extracted teeth from individuals from different regions, namely Rio de Janeiro and Sao Paulo, were used. There were also differences between scan resolutions. Other authors mention that differences between resolutions in scans should also be considered when interpreting results.

<table>
<thead>
<tr>
<th>Author(s)</th>
<th>Year</th>
<th>Population</th>
<th>Number of teeth investigated</th>
<th>Prevalence of MM (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gu et al.</td>
<td>2010</td>
<td>China</td>
<td>122</td>
<td>0.8</td>
</tr>
<tr>
<td>Harris et al.</td>
<td>2013</td>
<td>USA</td>
<td>22</td>
<td>36.4</td>
</tr>
<tr>
<td>Versiani et al.</td>
<td>2016</td>
<td>Brazil</td>
<td>136</td>
<td>22.1</td>
</tr>
<tr>
<td>Versiani et al.</td>
<td>2016</td>
<td>Turkey</td>
<td>122</td>
<td>14.8</td>
</tr>
<tr>
<td>Moe et al.</td>
<td>2017</td>
<td>Burma</td>
<td>181</td>
<td>18.7</td>
</tr>
<tr>
<td>Marceliano-Alves et al.</td>
<td>2019</td>
<td>Brazil</td>
<td>140</td>
<td>7.7</td>
</tr>
</tbody>
</table>

The middle-distal canal (MD)

An additional canal can be present in the distal root outside the expected number of one or two. It is not clear whether the reported variance in prevalence of an MD canal can be attributed to different populations or the use of different techniques. Micro-CT seems to improve the detection of an additional canal and revealed the highest percentages: 11% in first molars in a Brazilian population and even 22.5% in unspecified molars in an Egyptian sample. The prevalence of additional distal canals in other global populations found using other techniques is: radiographic: 1.7% in India and 0.6% in a Spanish population (clearing and staining); 1.7% in Burma, 1% in Turkey and none in Uganda, Kenya and Tanzania (CBCT); 0.5% in UAE and none in Portuguese, Brazilian and Vietnamese groups.

In Africa, a few studies were identified reporting on the presence of the MD canal. In Senegal individuals of African descent were investigated and a prevalence of 0.2% was noted by direct observation. Clinical investigation in a Kuwaiti population revealed no teeth with additional distal canals. In South Africa, a group of authors using CBCT...
reported a 7.3% prevalence of more than the expected one or two canals.35 It is not known why a greater prevalence was noted in this study compared to others using CBCT. Resolution of the CBCT scans could be different or techniques and experience could vary.14,15 In the US, using micro-CT Harris et al.39 found a single tooth that contained a three-canalled configuration, giving a prevalence of 4.5% from 22 teeth. As with the MM canals, no studies that focused on African or South African populations using micro-CT were found. A number of case reports describe the clinical management of additional distal canals.33,34 Figure 5 shows a clinical example of a case with a middle distal canal in the distal root of a mandibular first molar.

Variants in canal numbers

Apart from the norm of three or four canals, cases have been reported of unusual internal canal morphology. Most are accidental findings and because of the rarity of the morphology they are published as case reports. These morphologies can range between one and 11 canals in a single tooth (Table II):

<table>
<thead>
<tr>
<th>Author(s)</th>
<th>Year</th>
<th>Number of canals</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reeh35</td>
<td>1998</td>
<td>7</td>
</tr>
<tr>
<td>Ryan et al.36</td>
<td>2011</td>
<td>6</td>
</tr>
<tr>
<td>Nagaveni et al.37</td>
<td>2015</td>
<td>1</td>
</tr>
<tr>
<td>Arora et al.38</td>
<td>2015</td>
<td>8</td>
</tr>
<tr>
<td>Chandra et al.39</td>
<td>2017</td>
<td>11</td>
</tr>
</tbody>
</table>

Figure 6 illustrates a clinical example and management of a mandibular first molar that presented with six root canal systems. Three canals were identified in the mesial root and three in the distal root.

Accessory canals

Ahmed and co-workers60 describe an accessory canal as a small patent, blind or looped canal leaving the main canal that usually (but not always) communicates with the external root surface or furcation area. The description includes what were previously known as lateral canals.41 As long ago as 1984, Vertucci,15 one of the first to report on root canal morphology, used a clearing and staining technique to report on accessory canals in different teeth. He determined that the mesial root of the mandibular first molar contained the highest number of accessory canals, and the apical region was the most likely area to find them. These findings were repeated in more recent micro-CT studies of various populations (Chinese, Brazilian and German).40,41,62,65 Other studies report the presence of accessory canals in both roots using a clearing and staining technique16 in a Turkish population and using micro-CT39 on a US population. On the extracted Turkish first molars, sex variations were noted in the number per region of the root.16 On the other hand, Gu et al.38 report that in cases where an additional root is present, accessory canals are less common than in the main mesial and distal root canals. In both an American and a Ugandan sample, multiple portals of exit from accessory canals were noted.32,39

Although prevalence of accessory canals between populations varies (Uganda: 2.7% and China: 10% of molars studied) it is not clear if differences in methodology (clearing technique versus micro-CT) contributed to the difference noted. No studies could be found reporting on accessory canals in African or South African populations using micro-CT, but Figure 7 depicts the management of a clinical case in a South African individual where an accessory canal was present in the distal root. The figure also contains a micro-CT image of an extracted first molar from a South African individual with multiple accessary canals.

Chamber canals

Chamber canals may provide portals of communication between the periodontium in the furcation region and the root canal system.48 Early reports include one from Vertucci,2 who states that mandibular teeth have a higher prevalence of chamber communication with the furcation region than maxillary teeth (56% and 48% respectively). Other authors also report that patent chamber canals can be present in 29.4% of mandibular molars.67 In a study from Turkey using a sectioning technique, 24% of mandibular first molars had patent chamber canals.68 In a micro-CT investigation of German and Egyptian extracted teeth, a combined prevalence of 14.4% was reported.69

The prevalence of patent or inter-radicular chamber canals has been reported as 1.8%,60 4.2%,60 and 7.7%,68 while 9.4%68 and 10.2%66 were blind-ended.60 No studies reporting on the prevalence of chamber canals in African or South African populations using micro-CT could be found.

Apical deltas

Ahmed et al.60 describe an apical delta or an apical ramification as a root canal network at or near the root apex where the main root canal divides into more than two

![Image of clinical example and management of a mandibular first molar](image-url)
Accessory canals. Distribution of apical ramifications varies between populations, sexes, roots and methodologies used for detection. For instance, a Tanzanian study using a clearing and staining technique reported an absence of apical deltas; a Brazilian micro-CT study found a prevalence between 2% and 12% for each root and 16.5% of teeth (no distinction between first and second molars) in a Chinese population; and in two micro-CT studies much higher percentages were seen – 80% in a Burmese and 100% in a Chinese population.

Apical deltas may be present in both the mesial and distal roots. The literature reviewed did not agree on the predilection of either root. Some researchers report more deltas in the mesial root than in the distal; for instance Vertucci reports an incidence of 10% for the mesial root and 14% for the distal root, while other researchers report more in the distal root of the two-rooted group and the main distal root of the three-rooted ones. In a Turkish population the number of deltas was higher in males (19%-22%) than females (6%). In males more deltas were present in the distal root than in the mesial one, but in females the number of deltas was equal for the two roots. No studies reporting on apical deltas using micro-CT in a South African population were found, but Figure 8 depicts a clinical case and management of a mandibular first molar that contained an apical delta. Figure 8 includes a micro-CT image of an extracted first molar tooth with an apical delta in a South African individual.

Root canal configurations

Root canal configurations provide insight into the complexity of the internal root and canal morphology of teeth. To date, authors have used a variety of classification systems to describe common patterns and variants in mandibular first molars. The Vertucci system, which contains eight configuration types, is used by many as the gold standard for calculating a variety of teeth and methodologies including the mandibular first molar. Vertucci found that most American individuals studied contained type II (two canals joining at the apex) and type IV (two canals from orifice to apex) in the mesial root and type I in the distal (one canal from orifice to apex). Similar findings were reported in a micro-CT investigation on the mesial roots of Brazilian individuals. In contrast, other findings are quite diverse. For instance Salli and Egil, using micro-CT, found more type III configurations (single canal dividing into two and joining again into one exit) in the mesial roots of Turkish individuals and Marceliano-Alves et al. found more type IV configurations in the same root. In African studies, Rwenyonyi et al. calculated more type IV configurations in the mesial root and only type I in the distal root of Ugandans; Macjapa and Minja calculated more type II in the mesial and type I in the distal roots (n=146) of Tanzanians; Murithi et al. found predominantly type IV in the mesial root and type I in the distal (n=189) of Kenyans; and Sperber and Moreau calculated more type III in the mesial root and only type I in the distal of Senegalese individuals. In South Africa, Tredoux et al. used the Vertucci classification system with additions from Sert and Bayrili. They found several configurations distributed between configuration types, but type IV in the mesial roots and type I in the distal were more prominent (n=371).

Recently the Ahmed classification system has been accepted in morphological studies. In this system, classifications are made by considering the orifice, canal(s) pathway and foramen (O-C-F) and can include complexities (Figure 9).
Most studies using the Ahmed classification system used CBCT as the investigative method, but some studies applying this new classification system in mandibular first molars are scarce. Using CBCT, Abarca et al. determined that most molars had a MM M2-D2 configuration; in other words, in this configuration there are two orifices, two canal pathways and one apical foramen in the mesial root and a single canal from orifice to apical foramen in the distal root. The MD canal is another example of how micro-CT improves the visualisation of root canal morphology. Global prevalence of the MD canal varies from 0% in a CBCT study to 11% in a micro-CT study. It is also interesting to note that the same authors who reported no teeth containing an MM canal in African populations (Uganda, Senegal, Tanzania and Kenya) also found no additional canals in the distal root when using a clearing technique. Using CBCT, more than two canals were noted in 7.3% of South Africans while in a Brazilian micro-CT study this was 11%. Finally, sometimes teeth can have either one, six, seven, eight or even 11 canals in total (Table II). These findings appear to be quite rare and reports are available where they have been treated.

The MD canal is an example of how micro-CT improves the visualisation of root canal morphology. Global prevalence of the MD canal varies from 0% to 11% in a CBCT study to 11% in a micro-CT study. It is also interesting to note that the same authors who reported no teeth containing an MM canal in African populations (Uganda, Senegal, Tanzania and Kenya) also found no additional canals in the distal root when using a clearing technique. Using CBCT, more than two canals were noted in 7.3% of South Africans while in a Brazilian micro-CT study this was 11%. Finally, sometimes teeth can have either one, six, seven, eight or even 11 canals in total (Table II). These findings appear to be quite rare and reports are available where they have been treated.

The MD canal is an example of how micro-CT improves the visualisation of root canal morphology. Global prevalence of the MD canal varies from 0% to 11% in a CBCT study to 11% in a micro-CT study. It is also interesting to note that the same authors who reported no teeth containing an MM canal in African populations (Uganda, Senegal, Tanzania and Kenya) also found no additional canals in the distal root when using a clearing technique. Using CBCT, more than two canals were noted in 7.3% of South Africans while in a Brazilian micro-CT study this was 11%. Finally, sometimes teeth can have either one, six, seven, eight or even 11 canals in total (Table II). These findings appear to be quite rare and reports are available where they have been treated.

It is important to consider accessory canals, chamber canals and deltas during endodontic treatment. These root canal morphologies are relatively common and often create a pathway between the pulpal space and the outside of the dental crown.
root (the periodontal ligament space). Accessory pathways encapsulate blood vessels during the development of a root and exist as interrupted areas of development of the Hertwig root sheet.64 These canals are often out of reach of root canal instruments and isolated from the flow of irrigation solutions. This could be problematic, as causative organisms and their by-products can move from infected root canals to the periodontal ligament creating periodontal disease or the pulp can be infected when periodontal disease is present.31 Clinicians should always be mindful of this and follow a strict mechanical and chemical approach for optimal cleaning, shaping, disinfection and eventual 3D obturation of the prepared spaces.

There is consensus that the mesial root contains the most accessory canals, mainly in the apical third,15,16,38,39,41,63-65,92 although both roots can contain them even where additional roots are present.16,38 It has also been reported that the apical 3mm of roots contain the most accessory canals. This finding is important to consider in cases where apical surgery is required to remove at least 3mm of the root apex.24,63 The presence of accessory canals in the apical 3mm may be linked to the high prevalence of biofilms of organisms in the apical part of root canals of teeth diagnosed with apical periodontitis.24

There is another type of accessory canal that could create a communication channel between the pulp space and the furcation region, namely the chamber canal. If patients suffer from periodontal disease, a seemingly healthy tooth can become infected through these channels.34 The prevalence can be as high as 29.4%67 for mandibular first molars. Clinicians should be mindful of the potential risk of contamination when a tooth is obturated and restored. Chamber canals have been observed using radiographs,39 clearing and dyes69 and SEM.96 A few micro-CT investigations are also available. The first micro-CT study was conducted in 2022 using Egyptian and German extracted teeth.66 The chamber canals were described as patent (inter-radicular) or blind-ending (diverticulum) which is similar to terminology suggested by Ahmed et al.70,76 Any form of chamber canal can contain organic tissues that can ignite an inflammatory response.48

The presence of apical deltas is also an important morphological component of root canals. They provide the main root canal with multiple portals of communication with the outer surface of the root at the apex. To qualify as a delta according to Ahmed et al.,65 the main canal must divide into multiple smaller branches and contain more than two accessory canals.22,60,77 It does seem that the distal root may contain more apical deltas than the mesial root, as high as 16%. Micro-CT studies focusing on apical deltas are not common but a Chinese study reported that apical deltas are more common in the distal roots of two and three-rooted first molars but less common in the additional roots.39

Root canal configurations can play an important role during the diagnostic and treatment planning phase of endodontics. Over the years several classification systems have been suggested. One of the earliest is that of Weine et al.,24 which laid the platform for future developments but contained only three configuration types. Since then, systems have evolved to include more complex configurations.15,16,21,24,63,98-101 Unfortunately, shortcomings have been noted, especially the inability to include detail.71

The introduction of the Ahmed et al. system made it possible to include fine detail in calculations, such as accessory canals, apical deltas, complex connections and many other morphological findings.10,76 The Ahmed et al. classification is accepted by the research community and has clinical and academic applicability to undergraduate and postgraduate training.102,103 Despite its numerous advantages and although the inclusion of fine detail could be beneficial, it can add to the complexity of classification and create confusion for researchers and a degree of subjectivity,76 which can make it difficult to compare findings.18

No micro-CT studies were found that described configurations including accessory canals, chamber access canal or apical deltas on any tooth using the Ahmed et al. classification system. It seems that current challenges lie in developing a classification system that accommodates micro-CT and includes as much detail as possible without increasing complexity, though such a system will have to be locally accepted. A classification system or modification using the criteria of Ahmed et al. to include fine detail in an understandable and repeatable way could be beneficial for researchers. It might provide an additional advantage in the ability to compare the complexity of various teeth in different populations, although standardised landmarks and descriptions will be required for calculation purposes.

In conclusion, the root canal morphology of the mandibular first molar is complex and varies according to population. Clinicians should be mindful of possible additional root canals and accessory root canal anatomy that may include MM and MD canals, accessory canals, chamber canals and apical deltas. Currently, there is a shortage of research on African and South African populations using micro-CT.

Declaration
The authors declare that there is no financial interest in this paper and that this paper has not been submitted elsewhere for publication. All authors agree with the content of the manuscript. This manuscript did not receive any funding from funding agencies in the public, commercial or not-for-profit sectors.

Conflict of interest
We declare that there is no conflict of interest.

REFERENCES

79. Karibari MI, Noorani TY, Halm MS, Ahmed HMA. Root and canal morphology of the anterior permanent dentition in a Malaysian population using two classification systems: A CBCT clinical study. Aust Endod J. 2021; 47: 202-16

