The prevention of injuries among youth basketballers according to the "Sequence of Prevention": a systematic review

Appendix 1: Search strategies

Medline via PubMed
\#1 = Wounds and Injuries[Mesh] OR injur*[tiab]
\#2 = Youth basketball[tiab] OR child[Mesh] basketball[tiab] OR children basketball[tiab] OR adolescent[Mesh] basketball[tiab].
\#3 = Cohort studies[mesh:noexp] OR longitudinal studies[mesh:noexp] OR
follow-up studies[mesh:noexp] OR prospective studies[mesh:noexp] OR systematic review
OR cohort[TIAB] OR longitudinal[TIAB] OR prospective[TIAB] NOT retrospective[
TIAB] NOT retrospective studies[mesh:noexp]
\#4 (first and second research questions) = \#1 AND \#2 AND \#3 (Filters:
Humans; English)
\#5 (third and fourth research questions) = \#1 AND \#2 (Filters: Randomised
Controlled Trial; Humans; English)

SPORTDiscus via EBSCOhost

\#1 = AB (injur* OR caus* OR epidemiol* OR etiolog* OR etiology* OR mechanism* OR preval* OR inciden* OR occur* OR propor* OR distribut* OR populat* OR risk factor* OR predispose* OR prevent* OR intervent*)
\#2 = Youth basketball OR child basketball OR children basketball OR adolescent basketball.
\#3 (all four research questions) = \#1 AND \#2 (Filters:Academic Journal; English)

Appendix 2: Risk of bias appraisal

Quality in Prognosis Studies (QUIPS)

1. Study participation

- Description of the source population or population of interest
- Description of the baseline study sample
- Adequate description of the study sample recruitment (place, period, sampling strategy)

2. Study attribution

- Adequate response rate for study participants
- Description of attempts to collect information on participants who dropped out
- Reasons for loss to follow-up are provided

3. Prognostic factor (PF) measurement

- A clear definition or description of the PF is provided
- Method of PF measurement is adequately reliable and valid

4. Outcome measurement

- A clear definition of the outcome is provided
- Method of outcome measurement used is adequately reliable and valid

5. Study confounding

- Clear definition/description of the important confounders measured are provided
- Measurement of all important confounders is adequately reliable and valid
- Important potential confounders are accounted for in the analysis

6. Analysis and reporting

- Sufficient presentation of data to assess the adequacy of the analytic strategy
- The statistical analyses are adequately reported (without selective reporting)

Cochrane Collaboration's tool

1. Sequence generation

- Describe the method used to generate the allocation sequence in sufficient detail to allow an assessment of whether it should produce comparable groups.

2. Allocation concealment

- Describe the method used to conceal the allocation sequence in sufficient detail to determine whether intervention allocations could have been foreseen in advance of, or during, enrolment.

3. Blinding of participants, personnel and outcome assessors

- Describe all measures used, if any, to blind study participants and personnel from knowledge of which intervention a participant received. Provide any information relating to whether the intended blinding was effective.

4. Incomplete outcome data

- Describe the completeness of outcome data for each main outcome, including attrition and exclusions from the analysis. State whether attrition and exclusions were reported, the numbers in each intervention group (compared with total randomised participants), reasons for attrition/exclusions where reported, and any reinclusions in analyses performed by the review authors.

5. Selective outcome reporting

- State how the possibility of selective outcome reporting was examined by the review authors, and what was found.

6. Other sources of bias

- State any important concerns about bias not addressed in the other domains in the tool. If particular questions/entries were prespecified in the review's protocol, responses should be provided for each question/entries.

Appendix 3: Musculoskeletal injuries among youth basketball players: occurence and aetiology

Appendix 3 continued.

Reference	Participation and design	Injury definition	Incidence			Risk factors
			Location: Ankle Knee Hip/thigh Hand/finger Back Foot Shoulder Leg Arm/wrist ACL injury: Incidence Rate Risk	$137(32)$ $53(10)$ $55(10)$ $48(9)$ $31(6)$ $21(4)$ $24(4)$ $24(4)$ $19(3)$ $4(0.007)$ 0.004 0.024	$\begin{gathered} 135(31) \\ 86(20) \\ 40(9) \\ 35(8) \\ 27(6) \\ 23(5) \\ 12(3) \\ 19(4) \\ 10(2) \\ \\ 11(0.025) \\ 0.012 \\ 0.09 \\ \hline \end{gathered}$	
Gomez [54]	N: 890 G: Girls A: 14-18 years C: US D: Prospective cohort F: 1 season (1993/1994)	Occurred in a practice or a game, from the start of pre-season training to the completion of post-season play, in which the injury resulted in either missed practice or game time, necessitated the consultation of a physician, or involved the head or face.	-The overall i -The risk of a hour of expos -The rate of serid -The risk calc serious injuri Injury Sprain/strain Constusion Fracture Dislocation Laceration Location Ankle Knee Hip/thigh Hand/fingers Back Foot Leg Shoulder Arm/wrist Chest	jury rate w player sust re. ious injur lated usin per team	0.49 per athlete per season. ing an injury was 0.004 or 0.4% as 0.038 per athlete per season. am exposure hours is 0.0035 r hour.	
Backx [56]	$\mathrm{N}: 36$ G: Boys and girls A: 8-17 years C: Netherlands D: Longitudinal study F: 7 months	Contusion, sprain, strain, fracture/dislocation, abrasion/laceration, chondromalacia patellae, inflammation, concussion and uncertain diagnosis.	-Incidence rate in organized sports and physical education: 998 per 1000 young athletes a year. -Incidence rate in games: 23 injuries per 1000 hours.			-Game situations. -Incidence $=-919.4+35.3$ outdoor +51.6 high jump +55.3 contact, explaining 78% of the total variance.
Yde [56]	N: 56 Boys $\mathrm{n}=27$ Girls $\mathrm{n}=29$. A: <10 y (9), <14 $\mathrm{y}(13)$ and $<18 \mathrm{y}$ (34). C: Denmark D: Prospective study F: One season.	An injury was defined as an incident occurring during a match or training in the club, causing the player to miss at least one match or one training session.	Incidence rat Basketball inj Practice: IR 2. Games: IR 5.7 Percentage of Hand/fingers Ankle: Knee: Thigh/leg: Foot Shoulder/arm Other:	(IR) per 1 ries: IR 3.0 different in 43\% 33\% 5\% 5\% 0\% 0\% 14\%	playing hours ies:	-Ball contact, running and shooting are the most significant injury situations.
Owoeye [57]	$\mathrm{N}: 141$ Boys $\mathrm{n}=75$ Girls $\mathrm{n}=66$ A: 15-18 years. C: Nigeria D: A prospective observational study F: 32 matches	An injury was documented when an injured player required at least minimum on-field (medical) care such as ice, tape, etc. regardless of whether the player was able to continue or not.	Overall for both genders: IR 22.7 per 100 participants. - Jumping/landing was found to be the most common cause of injury Incidence rate (IR) per match (28.1%).Overall: IR 1.0 per match.			

Appendix 3 continued.

Appendix 3 continued.

Appendix 3 continued.

Appendix 3 continued.

Reference	Participation and	Injury definition	Incidence	
			Acute traumatic	Risk factors
design				

Appendix 3 continued.

Reference	Participation and design	Injury definition	Incidence	Risk factors
Wang [70]	$\mathrm{N}: 42$ G: Boys A: $16.5+/ 1.1$ years. C: Taiwan D: Cohort study F: 1 basketball season.	Ankle injuries.	n Ankle injured (n) Non- ankle injured (n) 42 18 24	-High variation of postural sway in both anteroposterior and mediolateral directions corresponded to occurrences of ankle injuries ($P<0.01$, [OR]=1.220; $P<0.001$, OR=1.216, respectively). All other variables were not associated with injury. -High variations of postural sway in one-leg standing test could explain partly the increased prevalence of ankle injury in basketball players.
Backman [71]	N: 75 Boys $\mathrm{n}=38$ Girls n $=37$ A: 14-20 years (mean $17.8+/-1.6)$ C: Sweden D: Prospective cohort. F: 1 year.	The following criteria were used for diagnosing patellar tendinopathy: -History of activity-related anterior knee pain and reduced function of the knee. -Distinct palpation tenderness corresponding to the painful area. -Knee pain provoked by a previously described single-legged decline squat test, designed to optimise the loading on the patellar tendon.	- 12 players (16.0\%) had developed unilateral PT.	-Players with dorsiflexion range less than 36.5 degrees had a risk of 18.5% to 29.4% of developing PT within a year, as compared with 1.8% to 2.1% for players with dorsiflexion range greater than 36.5 degrees. - Players were found to have had a significantly lower mean ankle dorsiflexion range at baseline than the healthy players, with a mean difference of -4.7 degrees ($\mathrm{P}=0.038$) for the dominant limb and -5.1 degrees ($\mathrm{P}=0.024$) for the nondominant limb.

$\overline{N,}$ number of participants; G, gender; A, age; C, country where study was conducted; D, design; F, follow-up period; h, hours; ?, unknown; IR, incidence rate; RR, rate ratio; AE, athlete exposures; $O R$, odds ratio; $C I$, confidence interval

Appendix 4: Musculoskeletal injuries among youth basketball players: preventive interventions and related effectiveness

Reference	Participation and design	Injury definition	Preventive intervention	Outcome
Foss [72]	N: 247 G: Girls A: Middle-school and high-school aged. C: US D: RCT F: 1 basketball season.	Injury was defined as: 1. Any injury causing cessation of participation in the current session.2. Any injury that caused cessation of participation on the day after the day of onset. 3. Any fracture 4. Any dental injury 5. Any mild brain injury.	From the first day of team practice until the first competition, teams were instructed to perform the training for 20 to 25 minutes, three times per week. When competition started, teams were instructed to perform a reduced-volume training protocol for 10 to 15 minutes, two times per week, until the end of the competitive season. CORE intervention: Core exercises pre-season: -Lateral jump and hold eight repetitions on each lower limb -Step hold eight repetitions on each lower limb -BOSUa (round) swimmers two sets of 10 repetitions -BOSUa (round) double-knee hold Two 20-s repetitions -Single-legged lateral AIREXb hop-hold 4 repetitions on each lower limb -Single tuck jump with soft landing two sets of 10 repetitions -Front lunges 10 repetitions on each lower limb -Lunge jumps 10 repetitions on each lower limb -BOSUa (flat) double-legged pelvic bridges two sets of 10 repetitions -Single-legged 908 hop-hold eight repetitions on each lower limb -BOSUa (round) lateral crunch 10 repetitions on each lower limb -Box double crunch two sets of 15 repetitions -Swiss ball back hyperextensions two sets of 15 repetitions. Core exercises in-season: Step hold eight repetitions on each lower limb -BOSUa (flat) double-legged pelvic bridges two sets of eight repetitions -Single-legged 908 hop-hold 10 repetitions on each lower limb -Single-legged Romanian dead lift one set on each lower limb -Unanticipated hop to stabilisation (level 1) Three five repetitions on each lower limb -Hop to stabilisation and reach (level 1) three repetitions on each lower limb -Single tuck jump with soft landing Two 10-s repetitions SHAM intervention: The SHAM protocol consisted of resisted running using elastic bands.	- For basketball, the athletes in the CORE group (rate $=4.99$ injuries $/ 1000 \mathrm{AEs}$) demonstrated lower injury incidences than the athletes in the SHAM group (rate $=7.72$ injuries $/ 1000 \mathrm{AEs}$) $\mathrm{P}=0.002$. The absolute risk reduction rate per 1000 AEs was: 2.73 (95\% CI 0.92, 4.54). -The CORE group had a reduction in injuries ($\mathrm{X}^{2}=5.51, \mathrm{P}=0.02$). A total of 39 of 126 (31\%) CORE group athletes and 55 of 121 (45\%) SHAM group athletes sustained at least one injury. -High school level, 14 of 53 (26\%) CORE group athletes versus 17 of 30 (57%) SHAM group athletes incurring an injury ($\mathrm{X}^{2}=7.49, \mathrm{P}=0.006$). -At the middle school level, the number of injured athletes in the CORE group (25 of 73 [34%] athletes) and the SHAM group (38 of 91 [42\%] athletes) was not different ($\mathrm{X}^{2}=0.97, \mathrm{P}=0.33$).
Labella [73]	N: 1492 (soccer and basketball). (755 control group and 737 in intervention group). G: Girls A: High-school age. C: US D: Cluster Randomised Controlled Trial F: ?	Lower extremity injuries.	Intervention group: 20-minute neuromuscular warm-up: Similar to previously studied NMT programmes, combining progressive strengthening, plyometric, balance, and agility exercises. Athletes were instructed to avoid dynamic knee valgus and to land jumps with flexed hips and knees. We taught coaches how to distinguish proper from improper form and how to use verbal cues to promote proper form (e.g. 'land softly' and 'don't let knees cave inward') because research shows that this feedback enhances effectiveness. Coaches received a DVD with narrated videos of the exercises, a laminated card listing the order and frequency of exercises for use on the court or field, and printed educational materials about knee injury risk factors and neuromuscular exercises Control: Control coaches used their usual warm-up.	Noncontact LE injury rates Control group Injury type: Gradual onset 1.22 Acute onset 1.61 Ankle sprains 0.74 Knee sprains 0.48 ACL sprains 0.26 LE injuries Treated surgically 0.17 Intervention group Injury type: Gradual onset 0.43 Acute onset 0.71 Ankle sprains 0.25 Knee sprains 0.21 ACL sprains 0.07 LE injuries Treated surgically 0

Appendix 4 continued.

Reference	Participation and design	Injury definition	Preventive intervention	Outcome
				- Intervention athletes had lower rates per 1000 AEs of gradual-onset LE injuries (0.43 vs $1.22, P<0.01$), acute-onset noncontact LE injuries (0.71 vs 1.61 , $P<0.01$), noncontact ankle sprains (0.25 vs $0.74, P=0.01$), and LE injuries treated surgically (0 vs $0.17, P=0.04$). -Coach-led neuromuscular warm-up reduces noncontact LE injuries in female high school soccer and basketball athletes from a mixed-ethnicity, predominantly low-income, urban population.
Emery [74]	N: 920 Boys $n=464$ Girls $n=456$ A: 12-18 years C: Canada D: Cluster Randomised Controlled Trial. F: 1 year		Both groups were taught a standardised warm-up programme. A warm-up routine was taught to all of the coaches and teams by an independent study physiotherapist or Certified Athletic Therapist who was not the team therapist. The 10 minute warm-up routine included aerobic, static stretch, and dynamic stretch components. This was considered the 'current standard of practice' for a high school basketball warm-up routine. Intervention group: In addition, teams in the training group received an additional five-minute sport-specific balance training warm-up component for practice sessions and a 20-minute home exercise programme using a wobble board.	-A basketball-specific balance training programme was protective of acute-onset injuries in high school basketball $[R R=$ 0.71 ($95 \% \mathrm{CI} ; 0.5-0.99$)]. -The protective effect found with respect to all injury $[R R=0.8(95 \% \mathrm{CI} ; 0.57-1.11)$], lower-extremity injury $[R R=0.83(95 \%$ CI; 0.57-1.19)], and ankle sprain injury [RR $=0.71$ ($95 \% \mathrm{CI} ; 0.45-1.13$)] were not statistically significant -Self-reported compliance to the intended home-based training programme was poor (298/494 or 60.3\%). -A basketball-specific balance training programme was effective in reducing acute-onset injuries in high school basketball. There was also a clinically relevant trend found with respect to the reduction of all, lower extremity, and ankle sprain injury.
McGuine [75]	N: 1460 (740 braced group and 720 control group. G: Boys and girls A: High-school aged. C: - D: RCT F: 1 basketball season (2009-2010)	Injury: An event that occurred during a basketball exposure that forced the athlete to stop participation and prevented the athlete from participating in basketball activities the following day.	Intervention group: McDavid Ultralight 195 braces were used. Athletes were instructed to wear the brace over a single pair of socks on both ankles for each team-organised conditioning session, practice, or competition throughout the season. Control: In principle, the control group did not wear an ankle brace. Ankle brace compliance and the use of other external support by control participants (lace-up brace, hard-shell brace, adhesive tape) were monitored by the onsite AT.	-Acute ankle injury was 68% less in braced group than in control. - Acute ankle injury rate braced 0.47/1,000 exposures and control 1.41/1 000 exposures ([HR] 0.32; 95\% [CI] 0.20, $0.52 ; \mathrm{P}=<0.001$). -For players with a previous ankle injury, the incidence of acute ankle injury was 0.82/1 000 exposures in the braced group and 1.79/1 000 exposures in the control group ([HR] 0.30; 95\% CI 0.17,0.90; P = 0.028). - For players who did not report a previous ankle injury, the incidence of acute ankle injury was 0.40 in the braced group and 1.35 in the control group ([HR] 0.30; 95\% CI 0.17, 0.52, $P<0.001$). -The use of a lace-up ankle brace reduced the incidence but not severity of acute ankle injuries in male and female high school basketball athletes by 68% regardless of sex, age, level of competition, or BMI compared with wearing no brace.

[^0]Appendix 5: The most important outcome measures displayed visually.

HoE, hours of exposure; HoGE, hours of game exposure; h, hours; exp, exposure; AE, athlete exposure; OR, odds ratio; CI, confidence interval; $H R$, hazard ratio; $R R$, relative risk

[^0]: N, number of participants; G, gender; A, age; C, country where study was conducted; D, design; F, follow-up period; ?, unknown; RCT, randomised controlled trial; AE, athlete exposures; $H R$, cox hazard ratio; CI, confidence interval; $R R$, relative risk

