Investigating the validity of low-cost technologies for the assessment of jumping-based performances in people with patellofemoral pain

Authors

DOI:

https://doi.org/10.17159/2078-516X/2025/v37i1a20301

Keywords:

jump, unilateral, video analysis

Abstract

Background: Patellofemoral pain (PFP) is prevalent across various age and activity groups and poses a risk for developing patellofemoral osteoarthritis. Since load on the patellofemoral joint is greatest during jumping manoeuvres, validating affordable measuring instruments to extract jumping-related variables is important for guiding rehabilitation.

Objectives: To evaluate the validity of low-cost devices against ‘gold standard’ force plates during jumping and to quantify differences in kinematic variables between low-cost devices and across different groups (PFP vs. Control).

Methods: A repeated-measures design of between- and within-subject factors was used. Thirty-two participants (Control: n=16; PFP: n=16) volunteered for the study. Single leg drop jump variables were validated using force plates and 3D motion capture (mocap) as the criterion standards against the MyJump2 and Tracker software applications as the reference standards.

Results: Good-to-excellent correlations were evident across all variables when comparing the force plates to MyJump2 (r=0.83-0.97) and Tracker (r=0.83-0.89) applications. Tracker was not significantly different from force plates or mocap for jump height (p=0.130) and flight time (p=0.230), but overestimated contact time for both groups (control group [p<0.001] and PFP group [p=0.007]). MyJump2 was not significantly different from force plates regarding contact time in the PFP group (p=0.500) but showed significant differences for the other parameters (p<0.001).

Conclusion: Both Tracker and MyJump2 applications show promise as alternatives to laboratory-grade equipment, with MyJump2 emerging as the top low-cost tool.

Downloads

Download data is not yet available.

References

1. Dey P, Callaghan M, Cook N, et al. A questionnaire to identify patellofemoral pain in the community: an exploration of measurement properties. BMC Musculoskel Disord 2016;17(1):237. [http://dx.doi.org/10.1186/s12891-016-1097-5] [PMID:27245443] DOI: https://doi.org/10.1186/s12891-016-1097-5

2. Kunene SH, Ramklass S, Taukobong NP. Anterior knee pain and its intrinsic risk factors among runners in under-resourced communities in Ekurhuleni, Gauteng. S Afr J Physiother 2018;74(1):452. [http://dx.doi.org/10.4102/sajp.v74i1.452][PMID:30349876] DOI: https://doi.org/10.4102/sajp.v74i1.452

3. Reijnders L, Van de Groes SAW. The quality of life of patients with patellofemoral pain - a systematic review. Acta Orthop Belg 2020;86(4):678–687 [PMID: 33861916]

4. Thomas MJ, Wood L, Selfe J, Peat G. Anterior knee pain in younger adults as a precursor to subsequent patellofemoral osteoarthritis: a systematic review. BMC Musculoskelet Disord 11(1):201. [http://dx.doi.org/10.1186/1471-2474-11201] [PMID:20828401][PMCID: PMC2944218] DOI: https://doi.org/10.1186/1471-2474-11-201

5. Hart HF, Patterson BE, Crossley KM, et al. May the force be with you: understanding how patellofemoral joint reaction force compares across different activities and physical interventions - a systematic review and meta-analysis. J Sports Med 2022;56(9):521–530. [http://dx.doi.org/10.1136/bjsports-2021-104686][PMID: 35115309] DOI: https://doi.org/10.1136/bjsports-2021-104686

6. Collins NJ, Bierma-Zeinstra SMA, Crossley KM, Van Linschoten RL, Vicenzino B, Van Middelkoop M. Prognostic factors for patellofemoral pain: a multicentre observational analysis. Br J Sports Med 2013;47(4):227–233. [http://dx.doi.org/10.1136/BJSPORTS-2012-091696][PMID:23242955] DOI: https://doi.org/10.1136/bjsports-2012-091696

7. Conceição F, Lewis M, Lopes H, Fonseca EM. An evaluation of the accuracy and precision of jump height measurements using different technologies and analytical methods. Appl Sci 2022;12(1):511. [http://dx.doi.org/10.3390/app12010511] DOI: https://doi.org/10.3390/app12010511

8. Ancillao A, Tedesco S, Barton J, O’Flynn B. Indirect measurement of ground reaction forces and moments by means of wearable inertial sensors: a systematic review. Sensors 2018;18(8):2564–2564. [http://dx.doi.org/10.3390/S18082564] [PMID: 30081607] [PMCID: PMC6111315] DOI: https://doi.org/10.3390/s18082564

9. Balsalobre-Fernández C, Glaister M, Lockey RA. The validity and reliability of an iPhone app for measuring vertical jump performance. J Sports Sci 2015;33(15):1574–1579. [http://dx.doi.org/10.1080/02640414.2014.996184][PMID:25555023] DOI: https://doi.org/10.1080/02640414.2014.996184

10. Amoroso A, Rinaudo M. Study of oscillatory motion using smartphones and tracker software. Institute of Physics Publishing; Conference Series 2018 Sep 1 (Vol. 1076, No. 1, p. 012013). IOP Publishing. [http://dx.doi.org/10.1088/1742-6596/1076/1/012013] DOI: https://doi.org/10.1088/1742-6596/1076/1/012013

11. Christensen LB, Johnson RB, Turner LA. Chapter 8: Creating the Appropriate Research Design. In: Christensen LB, Johnson RB, Turner LA, eds. Research methods, design and analysis. 12th ed. Harlow: Pearson Education Limited; 2015:248-250.

12. Faul F, Erdfelder E, Lang A, Buchner A. G*Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav Res Methods 2007;39(2):175–191. [http://dx.doi.org/10.3758/bf03193146] [PMID:17695343] DOI: https://doi.org/10.3758/BF03193146

13. Wang LI, Peng HT. Biomechanical comparisons of single- and double-legged drop jumps with changes in drop height. Int J Sports Med 2014;35(6):522–527. [http://dx.doi.org/10.1055/s-0033-1345133][PMID:23771829] DOI: https://doi.org/10.1055/s-0033-1345133

14. Schober P, Boer C, Schwarte LA. Correlation coefficients: appropriate use and interpretation. Anesth Analg 2018 126(5):1763-1768. [http://dx.doi.org/10.1213/ANE.000000000 0002864][PMID:29481436] DOI: https://doi.org/10.1213/ANE.0000000000002864

15. Hair J, Ringle C, Sarstedt M. PLS-SEM: Indeed a silver bullet. J. Mark. Theory Pract. 2011;19:139–511. [http://dx.doi.org/10.2753/MTP1069-6679190202] DOI: https://doi.org/10.2753/MTP1069-6679190202

16. Giavarina D. Understanding bland altman analysis. Biochem Med (Zagreb) 2015;25(2):141–151. [http://dx.doi.org/10.11613/ BM.2015.015] [PMID:26110027] [PMCID: PMC4470095] DOI: https://doi.org/10.11613/BM.2015.015

17. Hebbali A. olsrr: Tools for Building OLS Regression Models. R package [software online, version 0.6.1]. Available from: https://olsrr.rsquaredacademy.com/ (accessed 12 October 2024).

18. Dias JA, Pupo JD, Reis DC, et al. Validity of two methods for estimation of vertical jump height. J Strength Cond Res 2011;25(7):2034. [http://dx.doi.org/10.1519/JSC.0b013e3181e 73f6e][PMID:21701288] DOI: https://doi.org/10.1519/JSC.0b013e3181e73f6e

19. Watkins C, Maunder E, Tillaar R, et al. Concurrent validity and reliability of three ultra-portable vertical jump assessment technologies. Sensors 2020;20:7240. [http://dx.doi.org/10.3390/s20247240][PMID:33348726] [PMCID:PMC7767135] DOI: https://doi.org/10.3390/s20247240

20. Pueo B, Hopkins WG, Penichet-Tomas A, Jimenez-Olmedo J. Accuracy of flight time and countermovement-jump height estimated from videos at different frame rates with MyJump. Biol Sport 2023;40(2):595–601. [http://dx.doi.org/10.5114/biolsport.2023.118023][PMID:37077799] [PMCID:PMC10108745] DOI: https://doi.org/10.5114/biolsport.2023.118023

Downloads

Published

2025-05-09

Issue

Section

Articles

How to Cite

Deysel, G., van Aswegen, M., & Kramer, M. (2025). Investigating the validity of low-cost technologies for the assessment of jumping-based performances in people with patellofemoral pain. South African Journal of Sports Medicine, 37(1). https://doi.org/10.17159/2078-516X/2025/v37i1a20301
Views
  • Abstract 440
  • PDF 314
  • XML 154