Heat storage in upper and lower body during high-intensity exercise in athletes with spinal cord injuries
DOI:
https://doi.org/10.17159/2078-516X/2011/v23i1a362Abstract
Background: The thermophysiology of athletes with spinal cord injuries (SCI) is not well understood. Spinal cord lesions impact muscle mass, thermoregulatory neural signals and circulatory function. Understanding SCI thermoregulation physiology would benefit exercise function. Therefore, this study was designed to describe heat storage in the upper and lower bodies of SCI and able-bodied (AB) athletes. Procedure: Seven SCI and 8 AB athletes (matched for arm-crank VO2 peak) performed a ramp protocol in an environment similar to an indoor competitive environment (21˚C±1.5˚C, 55±3% relative humidity).Results: SCI athletes experienced similar upper-body heat storage of 0.82±0.59 J.g-1 and lower-body heat storage of 0.47±0.33 J.g-1 compared with that of AB athletes at 0.80±0.61 J.g-1 and 0.27±0.22 J.g-1 for upper and lower body, respectively. There were no significant differences between groups for rectal temperature (Trec) or oesophageal temperature (Tes). However, mean skin temperature (Msk) was significantly higher for SCI throughout the exercise bout (p=0.006). Conclusions: The results of this study suggest that SCI and AB athletes appear to thermoregulate in a similar manner, though SCI tend to store slightly more heat.
Downloads
Downloads
Published
Issue
Section
License
Copyright (c) 2011 South African Journal of Sports Medicine
This work is licensed under a Creative Commons Attribution 4.0 International License.
The South African Journal of Sports Medicine reserves copyright of the material published. The work is licensed under a Creative Commons Attribution 4.0 (CC BY 4.0) International License. Material submitted for publication in the South African Journal of Sports Medicine is accepted provided it has not been published elsewhere. The South African Journal of Sports Medicine does not hold itself responsible for statements made by the authors.
How to Cite
- Abstract 426
- PDF 359