
Abstract 

The economic independence of any nation depends

largely on the supply of abundant and reliable elec-

tric power and the extension of electricity services to

all towns and villages in the country. In this work,

the mathematical study of an electric power gener-

ating system model was presented via optimal con-

trol theory, in an attempt to maximize the power

generating output and minimize the cost of genera-

tion. The factors affecting power generation at min-

imum cost are operating efficiencies of generators,

fuel cost and transmission losses, but the most effi-

cient generator in the system may not guarantee

minimum cost as it may be located in an area where

fuel cost is high. We choose the generator capacity

as our control ui(t), since we cannot neglect the

operation limitation on the equipment because of its

lifespan, the upper bound for ui(t) is choosing to be

1 to represent the total capability of the machine

and 0 to be the lower bound. The model is ana-

lyzed, generation loss free equilibrium and stability

is established, and finally applications using real life

data is presented using one generator and three

generator systems respectively. 

Keywords: mathematical model, electric power gen-

erating system, generation loss free equilibrium

1. Introduction

‘Let there be light and there was light shone forth!

The world saw it and it was good! And the world

was revolutionized by the light called “electricity”’

(Manafa 1978).

It is no exaggeration that the whole of mankind,

indeed the entire world economy, is today gov-

erned by the forces of electricity. We turn on the

switch and light is made, as a result; we cook our

food with an electric cooker, heat our room with an

electric heater and cool them with an air condition-

er, listen to radio, watch television, fly a rocket and

jet to the moon and other planets, speak to distant

friends and relations by means of telephone and the

radio, and indeed, enjoy many amenities. Behind

these, electricity is at work.

Several authors have worked on the application

of optimal control including numerical application.

(Fister et al., 1998) worked on optimizing chemo-

therapy in an HIV model, (Fister and Panetta 2000)

worked on optimal control applied to cell–cycle spe-

cific cancer chemotherapy, (Burden et al., 2003)

considered optimal control applied to immunother-

apy, and (Agusto, 2008) worked on optimal control

of oxygen absorption in aquatic systems. Others

whose research touched on application of optimal

control include (Bao-Zhu and Tao-Tao 2009), (Erika

et al., 2007), (Kathirgamanathan and Neitzart

2008), (Kirshner 1996), (Salley 2007), to mention

few. In addition, several researchers have also

worked on the electric power system. These include

(Lee et al., 1988), (Billinton 1994), (Branimir et al.

1993), (Shaidehpour et al., 1988), (Ehsani et al.,

(1968) to name a few. As such, much emphasis has

been on the operational (design) aspect rather than

the economical aspect of an optimal power flow

problem of electric power generation.

The purpose of this work therefore, is to qualita-

tively study a mathematical model in the form of an

optimal control model, (Aderinto and Bamigbola

2010) for a better understanding of electric power

generation, in an attempt to minimize the cost of

generation, and maximize the generator output

without violating operating limitations on the equip-

ment.

2. A mathematical model of an electric power

generating system

Let Gi(t) represent the amount of power generated

by the ith generator at time t, and Ci(t) the capital

investment on the the ith generator at time t. For the

control classes, we choose measurable functions

defined on a fixed interval, aj ≤ ui ≤ bj (i = 1 ...,
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m), since we cannot neglect the physical law gov-

erning power generating systems and the operating

limitation of the equipment.

Considering the ith generator, the rate of change

in generation at time (t) depends on invested capi-

tal Ci(t) and the generator output Gi(t) which in

turn, depends on the power input, generator capac-

ity, running cost and transmission losses. Suppose

we have m generators, (i.e., i =1,2,…,m) then, we

have: 

= αi + qiCi(t)Gi(t) – ki Gi(t), 

i = 1,2,...,m (2.1)

where αi, qi and ki are respectively the actual mech-
anical/electrical energy from the high pressure tur-

bine and low pressure turbine (capacity of genera-

tor i), the corresponding running cost and the trans-

mission loss rate, which depends on the distance

from the grid centre. Also, the investment on capital

Ci(t) at time (t) is known to be dependent on labour

cost si, maintenance cost yi, fuel cost riCi(t)Gi(t),

capacity rate xi, and the cost of transmission to the

grid centre γiC(t), because of the physical law that

governs power generation and the operating limita-

tion on the equipment, we choose the generator

capacity as our control ui(t), since we cannot neg-

lect the operation limitation on the equipment

because of its lifespan, the upper bound for ui(t) is

choosing to be 1, to represent the total capability of

the machine . Thus, we have: 

= (si + yi) + riCi(t)Gi(t) – xiui(t)Ci(t) 

+ γiCi(t), i = 1,2,...,m (2.2)

In the above setting an important objective is to

minimize the total operating cost incurred in the

process of generating the required quantity of elec-

tric power G at any time t, and the components of

the total operating cost are C(t) and u (t). Thus, the

expression for the objective function is of the form: 

Where δ = (δ1, δ2, ... , δm ) is the unit expenditure

on the generators, η is a parameter to balance the

size of the control.

The problem to study is to find the control u that

minimizes the cost function:

subject to: 

= αi + qiCi(t)AGi(t) – ki Gi(t)

= (si + yi) – Ci(t)D Gi(t) – u
T(t)ECi(t) +

yi C(t), Gi(t0) = G0, Ci(t0) = C0, ai≤ui≤ bi

3. Generation loss free equilibrium and

stability

A good strategy to achieve the objective of attaining

maximum power output at minimum cost is to min-

imize the electric power generation losses. In this

connection, we determine the equilibrium point for

the system and establish that the system is both sta-

ble and generation loss free at this point.

Definition 3.1 Equilibrium point

Let us consider the system: 

= P(x1, x2), and dx2 dt = Q(x1, x2)

A point (x1
0, x2

0) for which P(x1
0, x2

0) = 0 = Q(x1
0,

x2
0) is called an equilibrium point or a critical point

of the system. The point (x1
0, x2

0) is a trajectory

point, i.e., the solution stating at this point, always

remains within reasonable distance of it. The equi-

librium point according to (Shabi and Abo-Zeid,

2010) is called locally asymptotically stable if it is

locally stable, global attractor i.e., if every solution

converges to that point as n→∝, and globally
asymptotically stable if it is locally asymptotically

stable and global attractor. According to (Cao and

Wang, 2003), the equilibrium point x* = (x*1,

x*2,..., x
*
n) is said to be globally asymptotically sta-

ble if it is locally stable in the sense of Lyapunov

and global attractive, where global attractivity

means that every trajectory tends to x* as t → +∝.
The global asymptotic stability of an equilibrium

point of a differential system can be expressed

according to an elementary result in stability theory

which stated that if the jacobian matrix of function

f, i.e., Jf(x), has eigenvalues with negative real part

at a singular point, then the point is asymptotically

stable. In other words if Jf(x) has eigenvalues with

negative real part at any critical point in IR , then

the critical point is globally asymptotically stable,

(Sabatini, 1990).

Definition 3.2 Generation loss-free

equilibrium 

The generation loss-free equilibrium (GLFE) of the

model is obtained by setting the right hand side of

the equation to zero and taking all the generator

output and production cost terms in the equations

to be zero. Thus, there is a steady state (equilibrium

point) of the system called generation loss free equi-

librium, i.e., a state where there is no generation

loss as t tends to infinity (after a long term has

passed). For more on free equilibrium see (Bhunnu

et al., 2008) and (Castilio-Chavez et al., 2007)
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Definition 3.3 Stability of a system

A system is said to be locally stable if its weight

function response decays to zero as t tends to infin-

ity. The system is asymptotically stable if and only if

the zero of the characterization function sn = a1s
n-1

= ... = an = 0 i.e., the finite poles of the transfer

function are negative for the real zeros or have neg-

ative real parts (for complex zeros). In other words,

a system is asymptotically stable if λi is negative
where λi are the eigenvalues. 

On the other hand, if each zeros is 1, the system

is marginally stable but if its greater than 1, then the

system is unstable, (Craven, 1995); (Burghes and

Graham 1989).

The generation loss-free equilibrium (GLFE) of

the model is obtained as follows, using the

Definitions, we obtain the following equations:

(3.1a)

(3.1b)

At the equilibrium points                , equation (3.1a

and 3.1b) becomes: 

(3.2a) 

(3.2b)

The system is said to be stable if all the eigenvalues

of the system are negative. 

We now state and prove the following theorems

for the local stability of the generation loss-free 

equilibrium at                 .

Theorem 3.1

The GLFE is asymptotically stable when the basic

loss production number λi = L0 <1 and unstable for

λi = L0 >1

Proof:

To study the stability of different equilibrium points,

we have to determine the Jacobian matrices

around the points. Considering the Jacobian of the

matrix at the equilibrium point:

given by

(3.3)

Evaluating the Jacobian at the equilibrium point

E,we obtain:

Finding the determinant of the characteristics of the

jacobian matrix at E, we have:

which can be written as:

λ2 – pλ + q = 0

where p = a11 + a22, q = a11a22 – a21a12

The eigenvalues are:
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Thus, the values of λ1 and λ2 determine the sta-
bility of the loss-free equilibrium. If the Det[J(E)]<0

then the basic loss Production number, Lo < 1. 

This implies that the generation loss-free equilib-

rium point E is asymptotically stable whenever L0 <

1, (i.e. when all the eigen values are negative the

condition holds). For the proof of a similar result see

(Bhunnu et al., 2008), and (Castilio-Chavez et al.,

2007).

By application of the real life data (as we have

on Table 4.1) we obtained λ1 and λ2 to be

0.0229739 and -0.0229739 respectively.

To obtain the next theorem, we utilize the fol-

lowing assumption by (Cao and Wang 2003). 

Assumption 3.1: If fi and gi (i = 1,2...,n) are

Lipschitz continuous, then there exist positive con-

stants ki, li such that:

[fi(u) – fi(v)[≤kiu – v,gi(u) – gi(v)≤li u – v,

for all u, v ∈ ℜ and i = 1,2,...,n,

Theorem 3.2

Given that Assumption (3.1) is satisfied, then equa-

tions (3.2a) and (3.2b) has a unique equilibrium

point. 

Proof

Let denote the

two equilibrium points of the system model (3.2a)

and (3.2b) where: 

These imply that:

Using the assumption above, we obtain:

Rewriting equation (3.6a) and (3.6b) respectively as:

Multiplying both sides of (3.7a) by (A –KL)-1 and
both sides of (3.7b) by  (A –Rβ –γL)-1 we

obtain:

which implies that for all i = 1,2,...n,

Hence, our model system has a unique equilibrium

point.

4. Application to real life data

Electric power generation as a real life endeavour

needs to be studied as a multidisciplinary subject

making use of contributions from the relevant fields.

As shown in the proceeding developments in this

work, mathematics has a lot to contribute in resolv-

ing practical problems in electric power generation

as well as improving on its advancement. In what

follows, we fashioned solutions to the electric power

generating system model using real life data. 

The following tabulated values were obtained

from the National Control Centre, Osogbo, Nigeria.
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(3.5a)

(3.5b)

(3.6a)

(3.4)

(3.6b)

(3.7b)

(3.7a)



4.1 Solution to the electric power

generating model 

In this work the desired solution is that power out-

put from the generating station is maximized with

minimum cost of production. The first variable α, is
best described by the actual mechanical / electrical

energy from the turbine. The second factor x i.e.,

the rate of generation is associated with the capaci-

ty of the generating machine. The third variable η is

the number of hours for which the generating

machine is going to be on.

There are two systems of differential equations

in the optimality system with one involving the con-

trol. The systems is solved using an analytical

method, (Matilde, 2009); (Otarod, 2008); (Pope et

al., 1998); (Shepley, 1966) and (Weisstein, 2010),

and iterative method with fourth-order Runge–

Kutta scheme, (Jain, 1983); (Hosking et al., 1996)

and (Eric, 2003); (Pingping 2009); (Naevadal

2003). The controls are updated at the end of each

iteration using the formula for optimal controls. 

The problem under consideration is:

Minimize

With
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Table 4.1: Generator parameters for a one-generator station (National Grid Centre, Osogbo)

Parameter Meaning Value

α actual mechanical/electrical energy available 800MW
from the turbine

q total running cost 0.3217 per unit

r fuel cost rate 0.347 per unit

x actual capacity rate 0.606

k rate of energy loss during transmission 0.002 MW per unit

s labour cost 200 per h (assumed)

y maintenance cost #100 per h (assumed)

γ Cost of transmitting from generating station # 0.3421 per unit

u generator actual capacity rate (control) a ≤ u ≤ b, 0 ≤ u ≤1,
a =0, b =1

δ unit of power generating station 1, 2

η1 Parameters to balance the size of the control. (Number 2, 6
of hours for which the machines can be on)

Table 4.2: Generator parameters for a three-generator station (National Grid Centre, Osogbo, Nigeria)

Parameter Meaning Value

a actual mechanical / electrical energy available from 100MW,100MW,80MW G1

the turbine 100MW, G2 100MW, G3 880MW,

q total running cost 0.3217, #0.3112, 0.312Per unit

r fuel cost rate 0.3478 each per unit

x actual capacity rate 0.606, 0.502, 0.402

k rate of energy loss during transmission 0.002 MW each per unit

s labour cost 70 per h (assumed)

y maintenance cost 50 per h (assumed)

γ Cost of transmitting from generating station 0.3421 per unit

u generator actual capacity rate (control) a ≤ u ≤ b, 0.3 ≤ u ≤0.9,
a = 0.0, b =1.0

δ unit of power generating station 1 each

η Parameters to balance the size of the control. (Number 3
of hours for which the machines can be on) 

(4.1)

(4.2)

(4.3)



By the Langrangian we have:

where Mi,...,Mm,Ni,...Nm ≥0 are penalty numbers
satisfying 

Mi (bi – ui) = 0,Ni(u1 – a1) = 0, at ui
*

Thus, using the data in Tables 4.1 and 4.2, the com-

putations for the numerical and analytical solution

are obtained respectively as follows.
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Table 4.3: Numerical solution for one-generator electric power model

h = 0.05, u = 0.1, 0.2, 0.3, ..., 1.0, G = 782.65698

U C J tf= 1 J tf= 1 = 4 J tf= 4

δ = 1, η = 6 δ = 2, η = 6 δ = 2, η = 6

0.1 383.975551 384.035551 760.010902 3040.043608

0.2 385.231445 385.471445 770.702890 3082.81156 

0.3 386.490626 387.030626 773.521252 3094.085008

0.4 387.7531012 388.713101 776.466202 3105.864808

0.5 389.018880 390.518880 779.537760 3118.15104

0.6 390.287973 392.447973 782.735416 3130.941664

0.7 391.560387 394.500387 786.060774 3144.243096

0.8 392.836131 396.676131 789.512262 3158.049048

0.9 394.115214 398.975214 793.090428 3172.361712

1.0 394.926917 400.926917 795.853834 3183.415336

Table 4.5: Numerical solution for a three-generators electric power model

h = 0.05, u = 0.2, 0.3, 0.4, ..., 0.9, δ = 1, η = 3, i = 1, 2, 3

u C1 C2 C3 J at tf =1 J at tf = 6

0.2 186.95889 186.63370 186.32130 560.27389 3361.64336

0.3 187.90813 187.56171 186.38327 562.66311 3375.97864

0.4 188.86003 188.20629 187.57888 566.08521 3396.51124

0.5 189.81461 189.33645 188.20943 569.63048 3417.78290

0.6 190.63340 189.78621 188.84115 572.50077 3435.00463

0.7 191.73181 190.57893 189.47405 576.19479 3457.16875

0.8 191.91594 191.37349 190.10813 579.15756 3474.94538

0.9 193.11363 192.16990 190.74339 583.23692 3499.42155

G1 99.900

G2 99.850

G3 77.920

Table 4.4: Analytical solution for one-generator

electric power model

h = 0.1, u = 0.1, 0.2, 0.3, ..., 1.0, δ = 1, η = 6,

G = 799.205

U C J

0.1 312.817575 390.035551

0.2 322.625669 390.331445 

0.3 332.843022 390.870626

0.4 343.488833 391.653101

0.5 354.583257 392.67888

0.6 366.147464 393.94797

0.7 378.203684 395.460387

0.8 390.775265 397.216131

0.9 403.886734 399.215214

1.0 403.926917 400.986917



4.2. Discussion of results

From these tables, it can be established that the

model gave the maximum generator output so far,

and that the more we generate the more we spend

on it. Therefore, the choice of ui is greatly depend-

ent on the number of generating machines that are

available and the number of hours or the duration

in which the generation is to be carried out. Thus u1
= 0.8, u2 = 0.7, and u3= 0.5 is recommended for

the three generators system above with J =

574.84430 at tf =1 and J = 3449.06581 at tf = 6. 

However, the physical capability of the

machines or simply the physical characteristics of

the generating machines is very important and so

the control has to be put into consideration while

trying to minimize the cost. As such, we can moni-

tor the control i.e., we can generate more with min-

imum cost and still maintain the good condition of

the generating machine. It was also observed that

the more time we spend, the more power and the

more cost we have. Thus, from the results obtained,

it is observed that for efficiency and effective func-

tioning of the generating machines in each station,

monitoring of the control is very essential.

5. Conclusion

Electrical engineers are concerned with the technol-

ogy of generation, transmission, distribution, and

utilization of electric energy. Since electric energy

systems is probably the largest and most complex

industry in the world, the electrical engineers offer

some challenging problems in designing future

power system to deliver sufficient electrical energy

in a safe, clean, ecological, and economical man-

ner. Hence, the need to improve the quality and

quantity of electric power generation is done by

applying optimal control theory to the study of elec-

tric power generation. To a layman, the result can

be interpreted by saying that, the electric power

generating systems can be expressed mathematical-

ly by using mathematical equations which relates

two or more parameters that can be used to meas-

ure the condition or state of electric power generat-

ing systems. These parameters enable us to know

the condition and the capacity of the generator,

how to use, and how long to use, so as to maximize

the generator output and minimize the cost of gen-

eration.
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