Comparison of satellite-retrieved high-resolution solar radiation datasets for South Africa

Keywords: Satellite retrieved irradiance, global horizontal irradiance, beam normal irradiance, ground stations


This study compares the performance of two satellite-based solar radiation methodologies for estimating the solar resource available in South Africa. Data from thirteen stations distributed in six climatic regions were considered. More than one year of hourly values of global horizontal and beam normal irradiance were examined in the validation of the satellite-retrieved estimates at every location. The best satellite method resulted in an overall relative mean bias of 1.41% for the global horizontal irradiance corresponding to almost 3 Wm-2 and exhibited a relative mean bias of 2.85% for the beam normal irradiance estimation (about 7 Wm-2). This satellite-based method was implemented into a geographical information system module, which contained high-resolution terrain data and allowed the effect of the surrounding topography on the estimation of the available solar resource to be considered. These estimates can, therefore, be used as input data for further analysis or applications. As an example, maps of the potential output that could be expected in South Africa from photovoltaic systems were created.

Author Biography

Lucky Ntsangwane, South African Weather Service

South African Weather Service; Senior Manager: Research and Development


[1] Jäger-Waldau A. 2016. PV Status Report 2016. JRC Science for Policy Report. EUR 28159 EN. JRC 103426. ISBN 978-92-79-63055-2. ISSN 1831-9424. Doi: 10.2790/682995.

[2] Perez R., Seals S., Zelenka Z. 1997. Comparing satellite remote sensing and ground network measurements for the production of site/time specific irradiance data. Solar Energy 60(2): 89-96.

[3] Antoñanzas-Torres F., Sanz-Garcia A., Martinez-de-Pison-Ascacibar FJ., Perpiñan-Lamiguiero O. 2013. Evaluation and improvement of empirical models of global solar irradiation: case study northern Spain. Renewables Energies 60: 604-614.

[4] Antoñanzas J., Urraca R., Martinez-de-Pison-Ascacibar FJ., Antoñanzas-Torres F. 2015. Solar irradiation mapping with exogenous data from support vector regression machines estimations. Energy Conversion and Management 100: 380-390.

[5] Dee D.P., Uppala S.M., Simmons A.J., Berrisford P., Poli P., Kobayashi S., Andrae U., Balmaseda M.A., Balsamo G., Bauer P., Bechtold P., Beljaars A.C.M., van de Berg L., Bidlot J., d Bormann N., Delsol C., Dragani R., Fuentes M., Geer A.J., Haimberger L., Healy S.B., Hersbach H., Hólm E.V., d Isaksen L., Kållberg P., Köhler M., Matricardi M., McNally A.P., Monge-Sanz B.M., Morcrette J.-J., Park B.-K., Peubey C., de Rosnay P., Tavolato C., Thépaut J.-N., Vitart F. 2011. The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Quartely Journal of the Royal Meteorological Society 137: 553-597.

[6] Ineichen P., Barroso CS., Geiger B., Hollmann R., Marsouin A., Müller R. 2009. Satellite application facilities irradiance products: hourly time step comparison and validation over Europe. International Journal of Remote Sensing 30(21): 5549-5571. doi:10.1080/01431160802680560.

[7] Gracia-Amillo A., Huld T., Müller R. 2014. Hourly solar radiation database for Eastern Europe and Asia. Validation and Applications to PV performance estimates. Proceedings 29th European Photovoltaic Solar Energy Conference and Exhibition, 2584-2588.

[8] Müller R., Matcoukas C., Gratzki A., Behr HD., Hollmann R. 2009. The CM-SAF operational scheme for the satellite based retrieval of solar Surface irradiance – A LUT based eigenvector hybrid approach. Remote Sensing and Environment 113: 1012-1024.

[9] Gracia-Amillo A., Huld T., Müller R. 2014. A new database of global and direct solar radiation using the eastern meteosat satellite, models and validation. Remote sensing 6(9): 8165-8189.

[10] Ineichen P. 2013. Long Term Satellite Hourly, Daily and Monthly Global, Beam and Diffuse Irradiance Validation. Interannual Variability Analysis. Available online: [accessed: 02.10.2017].

[11] Müller R., Pfeifroth U., Träger-Chatterjee C., Trentmann J., Cremer R. 2015. Digging the METEOSAT Treasure – 3 Decades of Solar Surface Radiation. Remote Sensing 7: 8067-8101.

[12] Müller R., Behrendt T., Hammer A., Kemper A. 2012. A new algorithm for the satellite-based retrieval of solar surface irradiance in spectral bands. Remote Sensing 4: 622-647.

[13] Inness A., Baier F., Benedetti A., Bouarar I., Chabrillat S., Clark H., Clerbaux C., Coheur P., Engelen R.J., Errera Q., Flemming J., George M., Granier C., Hadji-Lazaro J., Huijnen V., Hurtmans D., Jones L., Kaiser J.W., Kapsomenakis J., Lefever K., Leitao J., Razinger M., Richter A., Schultz M.G., Simmons A.J., Suttie M., Stein O., Thépaut J.N., Thouret V., Vrekoussis M., Zerefos C., and the MACC team. 2013. The MACC reanalysis: An 8-year data set of atmospheric composition. Atmospheric Chemistry and Physics 13: 4073-4109.

[14] Müller R., Pfeifroth U., Träger-Chatterjee C. 2015. Towards optimal aerosol information for the retrieval of solar surface radiation using Heliosat. Atmosphere 6(7): 863-878.

[15] Riihelä A., Carlund T., Trentmann J., Müller R., Lindfors A. V. 2015 Validation of CM SAF Surface Solar Radiation Datasets over Finland and Sweden. Remote Sensing 7: 6663-6682. doi:10.3390/rs70606663.

[16] Urraca R., Gracia-Amillo A. M., Koubli E., Huld T., Trentmann J., Riihelä A., Lindfors A. V., Palmer D., Gottschalg R., Antonanzas-Torres F. 2017. Extensive validation of CM SAF surface radiation products over Europe, Remote Sensing of Environment 199: 171-186. doi:10.1016/j.rse.2017.07.013.

[17] Žák M., Mikšovský J., Pišoft P. 2015. CMSAF Radiation Data: New Possibilities for Climatological Applications in the Czech Republic, Remote Sensing 7(11): 14445-14457. doi:10.3390/rs71114445.

[18] Huld T., Mueller R., Gambardella A. 2012. A new solar radiation database for estimating PV performance in Europe and Africa. Solar Energy 86(6): 1803-1815.

[19] Badescu V., Dumitrescu A. 2013. Accuracy of CM-SAF solar irradiance incident on horizontal surface. Theoretical and Applied Climatology 117(1-2): 233-246. doi:10.1007/s00704-013-0990-1.

[20] Antonanzas-Torres F., Cañizares F., Perpiñán O. 2013. Comparative assessment of global irradiation from a satellite estimate model (CM SAF) and on-ground measurements (SIAR): A Spanish case study. Renewable and Sustainable Energy Reviews 21: 248-261. doi:10.1016/j.rser.2012.12.033.

[21] Huld T. 2017. PVMAPS: Software tools and data for the estimation of solar radiation and photovoltaic module performance over large geographical areas. Solar Energy 142: 171-181.

[22] Súri M., Hofierka J. 2004. A new GIS-based solar radiation model and its application for photovoltaic assessment. Transactions in GIS 8(2): 175-190.

[23] Muneer T. 1990. Solar radiation model for Europe. Building Services Engineering Research and Technology 11(4): 153-163.

[24] Huld T., Suri M., Dunlop E. 2008. Comparison of potential solar electricity output from fixed-inclined and two-axis tracking photovoltaics modules in Europe. Progress in Photovoltaics Research and Applications 16(1): 47-59.

[25] Huld T., Cebecauer T., Suri M., Dunlop E. 2010. Analysis of one-axis tracking strategies for PV systems in Europe. Progress in Photovoltaics Research and Applications 18(3): 183-194.

[26] Suri M., Huld T., Dunlop E. 2005. PV-GIS: a web-based solar radiation database for the calculation of PV potential in Europe. International Journal of Solar Energy 24(2): 55-67.

[27] Shuttle Radar Topography Mission. The Mission to Map the World. [accessed: 02.10.2017].

[28] GRASS GIS manual: r.horizon Computes horizon angle height from a digital elevation model. [accessed: 02.10.2017].

[29] Huld T., Gracia Amillo A. 2015. Estimating PV module performance over large geographical regions: the role of irradiance, air temperature, wind speed and solar spectrum. Energies 8: 5159-5181.

[30] Huld T., Friesen G., Skoczek A., Kenny R.P., Sample T., Field M., Dunlop E.D. 2011. A power-rating model for crystalline silicon PV modules. Solar Energy Materials & Solar Cells 95(12): 3359-3369.

[31] Koehl M., Heck M., Wiesmeier S., Wirth J. 2011. Modelling of the nominal operating cell temperature based on outdoor weathering. Solar Energy Materials & Solar Cells 95(7): 1638-1646.

[32] Gracia Amillo A., Huld T., Vourlioti P., Mueller R., Norton M. 2015. Application of satellite-based spectrally resolved solar radiation data to PV performance studies. Energies 8: 3455-3488.

[33] Suri M., Huld T., Dunlop E., Ossenbrink H. 2007. Potential of solar electricity generation in the European Union member states and candidate countries. Solar Energy 81: 1295-1305.

[34] Urraca R., Gracia-Amillo A. M., Huld T., Martinez-de-Pison F.J., Trentmann J., Riihelä A., Lindfors A. V., Sanz-Garcia A.G. 2017. Quality control of solar radiation data with satellite-based products. Solar Energy 158: 49-62.
  • Abstract 0
  • pdf 0
Views and downloads are with effect from 11 January 2018