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Abstract 
Clustering of solar irradiance patterns was used in 
conjunction with cloud cover forecasts from Numer-
ical Weather Predictions for day-ahead forecasting 
of irradiance. Beam irradiance as a function of time 
during daylight was recorded over a one-year period 
in Durban, to which k-means clustering was applied 
to produce four classes of day with diurnal patterns 
characterised as sunny all day, cloudy all day, sunny 
morning-cloudy afternoon, and cloudy morning-
sunny afternoon. Two forecasting methods were in-
vestigated. The first used k-means clustering on pre-
dicted daily cloud cover profiles. The second used a 
rule whereby predicted cloud cover profiles were 
classified according to whether their average in the 
morning and afternoon were above or below 50%. 
In both methods, four classes were found, which had 
diurnal patterns associated with the irradiance clas-
ses that were used to forecast the irradiance class for 

the day ahead. The two methods had a comparable 
success rate of about 65%; the cloud cover clustering 
method was better for sunny and cloudy days; and 
the 50% rule was better for mixed cloud conditions. 
 
Keywords: numerical weather prediction; cloud 
cover; k-means; classes 

Highlights:  
• Clustering produced four classes of beam irradi-

ance profiles for Durban 
• Numerical weather prediction cloud cover pat-

terns into four classes 
• Association of classes used for day-ahead fore-

casting of beam irradiance 
• Forecasting had a moderate success rate of 

about 65% 
. 
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Nomenclature 

Abbreviations 
NWP numerical weather prediction ANN artificial neural network 

SUI solar utility index TOA top of atmosphere 

GHI global horizontal irradiance SAST South African standard time 

DHI diffuse horizontal irradiance PCA principal component analysis 

DNI direct normal irradiance RMSE root mean square error 

NOAA National Oceanic and Atmospheric Ad-
ministration 

  

 
Symbols 

kt clearness index TL Linke turbidity coefficient 

kb direct horizontal irradiance fraction C cloud cover percentage 

B beam irradiance SI silhouette index 

Bn normalised beam irradiance SI�C average silhouette index for an individual 
cluster 

Bc Ineichen model clear sky beam compo-
nent 

SI�TOT average silhouette index for the entire set of 
objects in a cluster 

𝐵𝐵�𝑛𝑛 hourly average of the normalised beam ir-
radiance 

CAM morning cloud cover average 

n number of minutes CPM afternoon cloud cover average 

i minute index   
 
 

   

1. Introduction 
Characterisation and forecasting of solar irradiation 
patterns has become increasingly important for de-
signing, operating and managing grid-connected so-
lar power plants. Knowledge of typical solar irradi-
ance at a given location, and how it varies from day 
to day, allows power plant operators to estimate 
power output. It is also useful for forecasting power 
output because knowledge of common irradiance 
patterns may be used to constrain a forecast to fall 
with a high probability into one of those patterns.  

An approach to understand solar resource pat-
terns includes classification and characterisation of 
irradiance profiles by cluster analysis, where a pro-
file is defined as irradiance and a function of time 
over a day. Classification is useful for forecasting be-
cause, if the class of a day can be successfully fore-
cast, the irradiance profile of that day would share 
the general pattern of the class. Forecasting employs 
a range of techniques, including using NWP and sat-
ellite imagery of cloud cover to predict how cloud 
cover changes over space and time (Inman et al., 
2013). Several studies (Mathiesen et al., 2013; Lo-
renz et al., 2009; Remund et al., 2008; Perez et al., 
2007; Aguiar et al., 2016) successfully employed 

NWP models together with other techniques for so-
lar forecasts. 

Other studies (Muselli et al., 2000; Maafi and 
Harrouni, 2003; Diabaté et al., 2004; Harrouni et 
al., 2005; Soubdhan et al., 2009; Gastón-Romeo et 
al., 2011 and Zhandire, 2017) investigated classifi-
cation of days based on solar irradiance but did not 
consider forecasting. The irradiance characteristics 
of Durban, KwaZulu-Natal Province, South Africa, 
which has a humid sub-tropical climate and signifi-
cant cloud variation, has been described by Lysko 
(2006), Zawilska and Brooks (2011) and Kunene et 
al. (2013), but not using clustering of irradiance pro-
files. Clustering was used by Zhandire (2017) to pro-
duce classes of a SUI for each of nine stations across 
South Africa. The SUI was a daily average of beam 
and diffuse horizontal irradiance. Zhandire did not 
consider beam irradiance independently or the diur-
nal variation of beam irradiance. In addition, the pri-
mary aim of that study was to provide a new solar 
resource index for classification for multiple stations 
across South Africa, and did not aim exclusively to 
characterise the solar irradiance patterns in Durban 
or investigate the possibility of forecasting using clas-
sification results.  
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The most commonly-used classification variable 
is kt, which is the ratio of the measured GHI to the 
TOA irradiance. Studies that use classification for 
forecasting include those by McCandless et al. 
(2014, 2015), where identification of different cloud 
regimes, subsequently solar irradiance forecasting 
models: ANNs, were built specifically to predict kt for 
each regime. McCandless et al. (2014) tested fore-
casts up to three hours ahead, and McCandless et 
al. (2015) used k-means clustering to identify seven 
cloud regimes based on the previous 45 minutes of 
kt for a 15-minute forecast. McCandless et al. (2014) 
identified cloud regimes by k-means clustering but 
tested forecasts up to three hours ahead rather than 
day forecasts. Furthermore, McCandless et al. 
(2015) merely considered the use of NWPs for fore-
casting without applying it. 

Badosa et al. (2013) presented a characterisation 
of mesoscale and local-scale solar irradiance varia-
bility for Reunion Island, which showed that the is-
land’s diurnal irradiance variation can be classified 
into five classes. Badosa et al. (2015) explored the 
variability in local irradiance conditions and cloud 
cover dynamics of Reunion Island using irradiance 
classes defined in Badosa et al. (2013) together with 
synoptic wind and relative humidity parameters. 
Jeanty et al. (2013) investigated irradiance patterns 
for Reunion Island using cluster analysis applied to 
daily profiles of direct horizontal irradiance fraction, 
kb, defined as 1 − DHI/GHI, where DHI is diffuse hor-
izontal irradiance. Similar to Badosa et al. (2013), 
the study revealed five dominant patterns for the is-
land. However, only four of the five patterns, corre-
sponding to clear, cloudy, AM clear and PM clear 
conditions, are positively correlated with the classes 
obtained by Badosa et al. (2013). 

Badosa et al. (2013; 2015) and Jeanty et al. 
(2013) served as a basis for much of the present 
study, where minute-resolution irradiance profiles 
similar to those of Jeanty et al. were pre-processed 
by PCA and then clustered by the k-means method. 
This method produced a set of classes of differing 
diurnal variation that characterise the irradiance pat-
terns in Durban. Clustering was also applied to 
hourly-averaged beam irradiance, and the classes 
obtained were compared with those obtained from 
the minute-resolution data. Although knowledge of 
both beam and global irradiance is important for so-
lar power plants, the present investigation was re-
stricted to beam irradiance to test a method suitable 
for extension to forecasting of global irradiance. Pre-
sented here is an approach that applies clustering to 
both radiometric data and NWP cloud cover for 
day-ahead forecasting of direct (beam) irradiance, 
which is tested against a simple decision rule using 
morning and afternoon averages of cloud cover. 
The NWP provides day-ahead cloud cover forecasts 
with an hourly temporal resolution, and cloud cover 

is used here for forecasting because of its strong as-
sociation with beam irradiance intensity.  

The forecasting model starts with an NWP day-
ahead forecast of hourly cloud cover percentage and 
uses it to predict the irradiance class for that day. 
This is compared with the day’s actual irradiance 
class, and the predicted irradiance profile is the 
mean profile of the class, which is compared with 
the actual irradiance profile of the day. In Section 2, 
the radiometric data used for this study is described 
and the variables used for clustering and forecasting 
are defined. The section also includes a motivation 
for the choice of the beam irradiance component for 
clustering and forecasting. Thereafter details of the 
clustering and forecasting methods are described. In 
Section 3, results of the clustering of radiometric and 
cloud cover data are given. Forecasting results are 
also presented, including a comparison of the per-
formance of the two forecasting methods. A discus-
sion of the clustering and forecasting results is pre-
sented in Section 4. Conclusions of the main find-
ings are given in Section 5.  

2. Method 
2.1 Data and definition of variables 
Irradiance data were collected at the University of 
KwaZulu-Natal, Durban, South Africa (29.87° S; 
30.98° E). The radiometric station, which is part of 
the SAURAN network (Brooks et al., 2015), is lo-
cated 150 m above mean sea level, on a roof plat-
form. Measurements for DNI were obtained using a 
Kipp & Zonen CHP1 pyrheliometer. The instrument 
was mounted on a Solys2 automatic sun tracker. 
Measurements were taken every two seconds and 
averaged over one-minute intervals. Daily profiles of 
DNI were recorded at one-minute intervals from 
8:30 to 16:30 solar time. This restricted time interval 
was chosen to avoid sensor shading during early 
morning and late afternoon in winter. The radio-
metric data were manually checked for quality and 
to identify anomalies. This was coupled with a fore-
cast of hourly C obtained from AccuWeather, a pub-
lic weather service provider, to produce a daily pro-
file from 9:00 to 16:00 SAST. The output was de-
rived from an NWP model run by the NOAA. 

The irradiance measurements were used to de-
fine minute-resolution and hourly-resolution profiles 
for clustering. Let B denote beam irradiance (DNI) 
at one-minute resolution, where Bn is defined as B 
normalised to the beam component Bc of the 
Ineichen clear sky model (Ineichen and Perez, 2002) 
for Durban as expressed by Equation 1. 

     𝐵𝐵𝑛𝑛 = 𝐵𝐵
𝐵𝐵𝑐𝑐

 (1) 

Then, let 𝐵𝐵�𝑛𝑛 denote the hourly average of Bn to pro-
duce Equation 2. 
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     𝐵𝐵�𝑛𝑛 = 1
𝑛𝑛∑ 𝐵𝐵𝑛𝑛𝑛𝑛

𝑛𝑛
𝑛𝑛=1  (2) 

where i is the minute index and n = 60. The first 
minute (i = 1) is on the half-hour, e.g. 9:30, values 
of 𝐵𝐵�𝑛𝑛 are known at times 9:00, 10:00, 11:00,… 
16:00. 

The normalised beam irradiance, Bn,, is used ra-
ther than beam fraction kb, because it removes sea-
sonality. Near dawn and dusk, DNI is close to zero, 
and DHI is almost equal to GHI, therefore, kb≈0. On 
a clear day, kb rises in the first hour after dawn to 
near unity and declines in late afternoon during the 
last hour before sunset. As the seasons change, sun-
rise and sunset times change, causing the kb profiles 
to vary in the start and end times of the rising and 
declining phases. This seasonal variation in profile, 
even for clear days, creates differences that are not 
produced by cloud conditions. Given that a primary 
objective was to cluster profiles in accordance with 
how they are affected by clouds, Bn was chosen ra-
ther than kb because the shape of the Bn profile is 
independent of seasonality. The Bn is zero before 
sunrise and after sunset and these times vary with 
season; and between these times its shape depends 
on cloud conditions, but for a clear day, its profile is 
a horizontal line. Figure 1 shows kb for Bc, the clear-
sky beam, for the winter and summer solstices, 
where kb = 1 − Dc/Gc, and the Ineichen clear sky 
model diffuse and global irradiance are Dc and Gc, 
respectively. 

The Ineichen model is preferred over other clear 
sky models since the only atmospheric parameter re-
quired is the Linke turbidity coefficient TL for the lo-

cation. Monthly averages of the TL values for Dur-
ban were estimated using local radiometric data with 
the MATLAB implementation of the clear sky model 
developed by Sandia National Laboratories (SNL, 
2012). 

2.2 Clustering 
For data with high dimensionality, in this case Bn, 
PCA was performed prior to clustering as a pre-pro-
cessing step. The method was implemented in 
MATLAB (R2015a) using the Statistics Toolbox. 
The PCA reduces the dimensionality of a data set, 
while preserving most of the variance in the data. As 
described by Jolliffe (2002), this is achieved by 
transforming to a new set of axes, called principal 
components, which are ordered successively so that 
the first few components retain most of the variation 
present in the original data. The cumulative percent-
age of the total variation was used to choose the 
minimum number of principal components to be re-
tained, where the minimum number of components 
with a cumulative percentage of 90% was retained. 

To obtain classes of pre-processed Bn, and of 𝐵𝐵�𝑛𝑛 
and C, k-means clustering was applied, also imple-
mented in MATLAB. The k-means algorithm, devel-
oped by MacQueen (1967) is a well-known and 
commonly-used partitional clustering algorithm 
(Halkidi, 2001). It partitions a set of n objects into k 
clusters, where the number of clusters, k, is specified 
in advance. In this case, each object is a daily profile 
of one of the variables defined above. The profile 
may be represented by a position in a multi-dimen-
sional space on which a metric is defined to calculate  

 

 
Figure 1. The direct horizontal irradiance profiles derived from the Ineichen  

clear sky model at winter and summer solstices in Durban. 
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the distance between positions. According to Rous-
seeuw (1957), the compactness and separation of 
clusters is quantified by the SI, which varies from −1 
to 1, where an SI that approaches 1 is indicative of 
an object being ‘well-clustered’. On the other hand, 
SI approaching −1 indicates that the object is not 
well-suited to that cluster (Zagouras et al., 2014; 
Rousseeuw, 1957). The average SI for an individual 
SI�C, where C is a cluster label, or for the entire set of 
objects (denoted here as SI�TOT) is used as an index 
of overall clustering compactness. Lletı́ et al. (2004) 
consider a silhouette value of 0.6 or greater to be a 
good clustering result, which will be used here as a 
criterion for acceptable compactness. The number 
of clusters was not determined by a specific criterion, 
but by consideration of the results for various values 
of k, guided by SI�TOT as well as values of SI�C for each 
cluster. The aim of the present study was to find the 
‘natural’ clustering, which corresponds with finding 
the largest number k of compact clusters. The guide-
line used was to maximise k, while keeping SI�TOT 
greater than 0.6 and seeking to maintain SI�C as high 
as possible for each of the clusters obtained. Classi-
fication of daily profiles was based on the clusters 
that were determined, the terms ‘cluster’ and ‘class’ 
are used interchangeably. 

2.3 Forecasting 
Let the class mean profile 〈𝐵𝐵�𝑛𝑛〉 denote the mean of 
the set of 𝐵𝐵�𝑛𝑛 profiles for a class. Forecasting was 
done by using a day-ahead forecast of C to forecast 
the class of the day and then using 〈𝐵𝐵�𝑛𝑛〉 for that class 
as the forecast of the 𝐵𝐵�𝑛𝑛 profile. Although C was 
specified on the hour in ‘clock time’ (SAST), and 
hence offset from solar time, the difference of at 
most 20 minutes was small compared with the one-
hour resolution of the C profile and was not signifi-
cant. Forecasting was done using two methods. The 
first uses classes of C found by k-means clustering. 
The forecast of C is assigned to one of the classes, 
which in turn is associated with one of the classes of 
𝐵𝐵�𝑛𝑛. The second method, the ‘50% rule’, uses a set 
of decision rules based on C. Both methods depend 
on the clustering results and these are described fur-
ther in Section 3. The profiles forecast using both 
methods are compared with the actual 𝐵𝐵�𝑛𝑛 for the 
day by computing the RMSE given by Equation 3. 

RMSE =  �
∑ �𝐵𝐵�𝑛𝑛_𝑎𝑎𝑐𝑐𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑛𝑛−𝐵𝐵�𝑛𝑛_𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑐𝑐𝑎𝑎𝑓𝑓𝑎𝑎𝑛𝑛

�
2𝑛𝑛

𝑛𝑛=1

𝑛𝑛
 (3) 

where 𝐵𝐵�𝑛𝑛_𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑖𝑖and 𝐵𝐵�𝑛𝑛_𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑎𝑎𝑎𝑎𝑓𝑓𝑎𝑎𝑖𝑖
 are the actual and 

forecast profiles, respectively, and n is the number 
of hours in the time interval. The actual profile is that 
derived from radiometric measurements, whereas 
the forecast profile is the mean profile of the class 
that is forecast. 

3. Results  
3.1 Data 
For clustering of radiometric data to establish clas-
ses, the set contained 365 days from 28 January 
2014 to 27 January 2015. Clustering of cloud cover 
(from NWP forecasts) was applied to a set of 243 
days in 2016, approximately uniformly distributed 
throughout the year, where missing days were al-
most all weekends. There was no requirement that 
the radiometric data and NWP cloud cover be in the 
same year because clustering was applied to find 
patterns that were independent of a specific year. 
Testing of forecasting was done using a set of 100 
days in 2017, including most days during the 
months of January to June. 

3.2 Clustering of minute-resolution normal-
ised beam irradiance 
Each daily profile of Bn consisted of a set of 481 val-
ues for each minute during the interval 8:30 to 16:30 
solar time. Therefore, each Bn profile corresponded 
to a point in a 481-d space, which was reduced to a 
low-dimensional space by PCA. The first eight com-
ponents accounted for 90% of the variance and 
were hence retained.  

The clustering results for the daily profiles of Bn 
in 8-d space were almost identical to those for 𝐵𝐵�𝑛𝑛, 
producing identical classes with identical members, 
consequently only the results of clustering of 𝐵𝐵�𝑛𝑛 are 
presented. This high degree of similarity indicates 
that the sub-hourly temporal structure in Bn did not 
result in any significant difference in clustering com-
pared with the temporal structure in the hourly av-
erage. 

3.3 Clustering of hourly-resolution normal-
ised beam irradiance 
The daily profiles of 𝐵𝐵�𝑛𝑛were clustered using k-means 
for k = 4, since SI�TOT = 0.65 was found to be the 
highest for 4 clusters. This was selected as the final 
clustering result. Clusters A and B have SI�C of 0.79, 
and clusters C and D have SI�3 = 0.33 and SI�4 = 
0.25. Table 1 summarises the clustering information.  

Table 1. Hourly-resolution normalised beam 
irradiance clustering information for k = 4  

solution. 
Class 𝑆𝑆𝑆𝑆� 𝐶𝐶 𝑆𝑆𝑆𝑆� 𝐶𝐶 < 0 Proportion of 

days (%) 

A 0.79 0 37 

B 0.79 0 34 

C 0.33 9 18 

D 0.25 7 11 
 

The four 𝐵𝐵�𝑛𝑛 clusters are represented in Figure 2, 
which shows morning (8:30–12:30) average of 𝐵𝐵�𝑛𝑛 
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on the horizontal axis and afternoon (12:30–16:30) 
average on the vertical axis. Clusters A and B are 
compact and widely separated, whereas clusters C 
and D, in the region between A and B, are less com-
pact and have members at their edges that are closer 
on average to A and B than to their own cluster, re-
sulting in negative SI for those members. A minor 
difference between the 𝐵𝐵�𝑛𝑛 and Bn clustering is that 
the number of profiles with negative SI decreased 
from 19 for Bn to 16 for 𝐵𝐵�𝑛𝑛. 

Since beam irradiance is strongly correlated with 

cloud cover, Figure 3 shows that there are four clas-
ses of diurnal variation in beam irradiance on the 
half-day scale: sunny all day (cluster A); cloudy all 
day (cluster B); sunny in the morning and cloudy in 
the afternoon (cluster C); and cloudy in the morning 
and sunny in the afternoon (cluster D). These clus-
ters are hence identified as irradiance pattern clas-
ses, which are labelled as: Class A: sunny, Class B: 
cloudy, Class C: sunny AM-cloudy PM, and Class D: 
cloudy AM-sunny PM.  The diurnal patterns shown 
in Figure 2 are evident in the class mean profiles 
plotted in Figure 3. 

 

 
Figure 2. Cluster map of hourly-resolution normalised beam irradiance. Class A days have high morning 

and afternoon averages, whereas Class B is low for both. Classes C and D have a combination of low and 
high averages. 

 
Figure 3. Mean profiles of the hourly-resolution normalised beam irradiance classes. Cloudy (B) and 

sunny (A) conditions are characterised by low and high beam irradiance values, respectively. The sunny 
periods of classes C (sunny-cloudy) and D (cloudy-sunny) do not receive the same irradiance levels as 

Class A. Similarly, the cloudy periods of classes C and D are less cloudy as compared to Class B. 
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Figure 4. Class mean profiles of hourly-resolution normalised beam irradiance for (a) sunny, (b) cloudy, 
(c) sunny-cloudy, and (d) cloudy-sunny. Range of uncertainty (dashed line) shown as one standard devia-

tion for each class mean profile (solid line) calculated for each hour. 

It is important to have knowledge of the range of 
uncertainty for forecasting, which is shown in Figure 
4(a)–(d) as plots of standard deviation for each class 
mean profile, calculated for each hour. The more 
compact clusters, A and B, have lower standard de-
viation than the less compact clusters, C and D. A 
forecast that places a day into a class will, therefore, 
be predicted to have an irradiance profile similar to 
that class mean profile within an uncertainty corre-
sponding to the class standard deviation. It is, there-
fore, expected that forecasts of A and B class will 
have less uncertainty than for C and D. 

3.4 Clustering of cloud cover 
It was necessary to have four classes of cloud cover 
in order to use classes of C to forecast the irradiance 
class. Because low 𝐵𝐵�𝑛𝑛 is correlated with high C, it 
was expected that they should exhibit similar clus-
tering, considering that NWP is designed to model 
the weather pattern as accurately as possible. It was 
found that k = 4 was a good solution, with SI�TOT = 

0.74. Table 2 summarises the results of clustering of 
daily C profiles. 

Table 2. Cloud cover clustering information 
for k = 4 solution. 

Class 𝑺𝑺𝑺𝑺���𝑪𝑪 𝑺𝑺𝑺𝑺���𝑪𝑪 < 𝟎𝟎 Proportion of 
days (%) 

A′ 0.86 0 26 

B′ 0.88  0 44 

C′ 0.46 2 8 

D′ 0.42 4 21 

 
Figure 5 shows a cluster map with morning aver-

age of C on the horizontal axis and the afternoon 
average on the vertical axis. The four clusters have 
cloud cover conditions that are associated with the 
𝐵𝐵�𝑛𝑛 classes and are given the same labels, but with 
primes. The C classes are, therefore, Class A′: low C 
all day, Class B′: high C all day, Class C′: low C in 
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the morning and high C in the afternoon, and Class 
D′: high C in the morning and low C in the after-
noon. 

The diurnal variation in C is shown in Figure 6 
as a plot of class mean 〈𝐶𝐶〉 for the four classes. 

3.5 Forecasting 
As mentioned previously, two approaches were 
used to apply a cloud cover forecast to determine a 
𝐵𝐵�𝑛𝑛 forecast. The first was to use the four classes of C 
obtained from clustering. For a given day, the C 
forecast was obtained; and the day was assigned to 
one of the C classes by finding the nearest centroid 

in the 8-d cluster space. The associated irradiance 
class was then regarded as the forecast of the irradi-
ance class of that day. The forecast irradiance profile 
is the class mean profile, with estimated uncertainty 
given by the class standard deviation. For example, 
suppose that a given day is forecast to belong to C 
class A′. Then the irradiance forecast is that the day 
belongs to the associated 𝐵𝐵�𝑛𝑛 class A. 

The forecasting results using the classes of C are 
presented in Table 3. Each cell in Table 3 shows the 
number of days in a predicted class that were found 
to be in an actual class, with marginals in the right-
most column and lowest row. Shown in brackets are 

Figure 5. Cluster map of cloud cover with daily profiles averaged for morning and afternoon, 
where A′, B′, C′, and D′ denote sunny, cloudy, sunny mornings and cloudy afternoons, cloudy 

mornings and sunny afternoons, respectively. 

Figure 6. Daily mean profiles of cloud cover. Sunny days (A′), cloudy days (B′), sunny morn-
ings and cloudy afternoons (C′), and cloudy mornings and sunny afternoons (D′). 
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Table 3. Forecast results using clustering of C on the testing sample of 100 days in 2017.  

 Actual beam irradiance class 
P

re
di

ct
ed

  b
ea

m
 ir

ra
di

an
ce

  
cl

as
s 

 A B C D Total forecast 

A 26 
(72%) 

1 
(3%) 

4 
(11%) 

5 
(14%) 

36 

B 0 
(0%) 

23 
(66%) 

8 
(23%) 

4 
(11%) 

35 

C 3 
(30%) 

2 
(20%) 

5 
(50%) 

0 
(0%) 

10 

D* 2 
(11%) 

4 
(21%) 

2 
(11%) 

11 
(57%) 

19 

 Total actual 31 30 19 20 100 

Note: Each cell shows the number of days in a predicted class that were found to be in an actual class, 
with marginals in the rightmost column and lowest row. Shown in brackets are the number in a cell as 
a percentage of the total in the rightmost column.  

* The value in row D, column D has been rounded down so that the row adds to 100%. 

 

the number in a cell as a percentage of the total in 
the rightmost column. For example, the first row 
shows the 36 days predicted to be in class A, of 
which 26 were in Class A, 1 in B, 4 in C and 5 in D. 
Thus 72% of days predicted to be in Class A were in 
Class A, whereas 3% were actually in Class B, 11% 
in C and 14% in D. The number of correct predic-
tions is in the main diagonal. 

Table 3 shows that prediction success rate per 
class ranges from 50–72%, with Classes A and B 
having the highest rates. Regarding incorrect predic-
tions, predicted Class A was actually Class B for only 
one day (3%) and predicted Class B was actually 
Class A in zero cases. This is because, for a good 
NWP, it should be unusual for a sunny day to be 
wrongly forecast as a cloudy day and vice-versa. 
Classes C and D had a higher percentage of incor-
rect predictions, although Class D’s success rate of 
58% is not much lower than that of Class B. The 
success rate of 65% over all classes may only be ap-
plied to the period January to June from which the 
sample of 100 days was drawn, but it so happens 
that a standardised rate based on weighting with 
class frequencies over one year, given in Table 1, 
also gives a success rate of 65%. 

The second forecasting method uses a simple de-
cision rule, termed the ‘50% rule’ because it assigns 
a C profile to a class depending on whether the 
morning average (CAM) and afternoon average (CPM) 
are above or below 50%. This method was chosen 
as a simple alternative to clustering that considers 
the diurnal variation of the 𝐵𝐵�𝑛𝑛 classes. The 50% rule 
is described in Table 4. 

The forecasting results using the 50% rule are 
presented in Table 5, which has the same format as 
that of Table 3. 

Table 4. Decision rules for morning and after-
noon average cloud cover percentage and 

the associated hourly-resolution beam irradi-
ance class. 

Associated beam  
irradiance class (CAM in %) (CPM in %) 

A ≤ 50 ≤50 

B > 50 > 50 

C ≤ 50 > 50 

D > 50 ≤ 50 

 
Table 5 shows that the 50% rule produces pre-

diction success rate per class in the range 59–83%, 
which is somewhat better than that of the C cluster-
ing forecast, except that there is a higher rate (9%) 
of Class B incorrectly predicted as Class A. The Class 
D success rate is significantly better, although the 
sample is rather small. Furthermore, Class D pre-
dicted by the 50% rule has only about a third of the 
days predicted to be in Class D by C clustering be-
cause, as may be seen in Figure 5, Class D′ has a 
large number of days with CAM ≤ 50%, which are 
therefore predicted by the 50% rule to be in Class A. 
This increased the number of sunny (Class A) days 
predicted by the 50% rule. A consequence is that the 
50% rule results in more Class A days being incor-
rectly predicted than in the C clustering method. In 
comparison with C clustering, the prediction success 
rate decreased for Classes A and B (by 8% and 7%, 
respectively) and increased for Classes C and D (by 
13% and 25%). The overall raw success rate is 63%, 
and the standardised success rate is 64%, both of 
which, apart from being almost identical, are very 
close to that of the C clustering method.  
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Table 5. Forecasting results using the 50% rule. 

 Actual beam irradiance class 

P
re

di
ct

ed
 b

ea
m

 ir
ra

di
an

ce
 

 c
la

ss
 

 A B C D Total forecast 

A 
30 

(64%) 
4 

(9%) 
4 

(9%) 
9 

(19%) 47 

B 
0 

(0%) 
23 

(59%) 
10 

(26%) 
6 

(15%) 39 

C 
1 

(13%) 
2 

(25%) 
5 

(63%) 
0 

(0%) 8 

D 
0 

(0%) 
1 

(17%) 
0 

(0%) 
5 

(83%) 6 

 Total actual 31 30 19 20 100 

Note: Each cell shows the number of days in a predicted class that were found to be in an actual class, 
with marginals in the rightmost column and lowest row. Shown in brackets are the number in a cell as 
a percentage of the total in the rightmost column. 

 
Table 6 shows the average RMSE values, com-

puted using Equation 3, for each class using the re-
spective forecasting method. Overall, the average 
RMSE per class are similar using the two forecasting 
methods, with smaller RMSE for Classes A and B 
using C clustering, and smaller RMSE for Classes C 
and D using the 50%rule. The largest difference is in 
Class A. 

Table 6. Average RMSE for each class using 
the two forecasting methods. 

Class 50% rule C clustering 

A 0.27 0.20 

B 0.24 0.22 

C 0.29 0.32 

D 0.29 0.34 

 

4. Discussion 
Clustering one year of radiometric profiles (𝐵𝐵�𝑛𝑛) 
yielded four classes that describe diurnal patterns in 
Durban. It turned out that PCA applied to the 481-
dimensional Bn (minute-resolution) profiles resulted 
in the same clusters obtained from 𝐵𝐵�𝑛𝑛 (hour-resolu-
tion), which indicates that hour-resolution profiles 
contain sufficient information for the four main clus-
ters. These were very similar to four of the five clas-
ses obtained for Reunion Island by Jeanty et al. 
(2013) and Badosa et al. (2013). They were also 
similar to the three classes obtained by McCandless 
et al. (2014), of which the sunny (Class A) and 
cloudy days (Class B) formed two distinct classes 
whereas the partly cloudy days in the McCandless et 
al. (2014) classification were subdivided here by di-
urnal pattern into Classes C and D. 

Two methods were tested to forecast daily beam 
irradiance profiles from cloud cover output of NWP: 
C clustering and the 50% rule. The forecasting re-
sults showed that the two methods produced com-
parable prediction success rates in the range 50–
83%. The overall success rates were about 65% for 
both methods, with variation for the different clas-
ses. The C clustering showed the best performance 
in predicting sunny days (Class A), followed by 
cloudy days (Class B). This may be due to the NWP 
model being able to distinguish between cloud-free 
and cloudy situations relatively well. By contrast, the 
50% rule had a success rate that is better for the 
mixed conditions of Classes C and D. This may be 
due to the stronger separation of cloud cover condi-
tions by the 50% rule as compared with clustering. 
Average profile error as quantified by RMSE was in 
the range 0.2–0.34. These results are similar to those 
of Badosa et al. (2015), where the lowest RMSE was 
for sunny conditions. However, in contrast to the 
present study where the highest RMSE where found 
for mixed conditions, Badosa et al. (2015) found the 
highest forecasting errors were associated with 
cloudy conditions. The main difference in the meth-
ods is that the present work used cloud cover output 
of NWP, with clustering of cloud cover profiles, and 
uses beam rather than global irradiance. 

The novelty of this investigation is the use of clus-
tering of cloud cover output from NWP, as well as 
the 50% rule, for day-ahead forecasts of beam irra-
diance using classification of daily irradiance pro-
files. The forecasting methods have moderate suc-
cess, which may be attributed both to the degree of 
accuracy of NWP and the existence of clusters of di-
urnal irradiance profiles, which show a high degree 
of clustering for sunny and cloudy conditions but are 
less well-clustered for mixed conditions. 
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5. Conclusions 
Clustering of 𝐵𝐵�𝑛𝑛 for Durban, South Africa, produced 
four classes with diurnal patterns as follows: sunny 
all day (Class A), cloudy all day (Class B), sunny 
morning and cloudy afternoon (Class C) and cloudy 
morning and sunny afternoon (Class D). These re-
sults provide a classification of beam irradiance pro-
files for Durban, and a novel approach to day-ahead 
forecasting using classification of cloud cover predic-
tions, in particular by clustering. Day-ahead fore-
casts have value in predicting the general daily pro-
file and are useful for constraining models for multi-
hour predictions on a particular day. Further work 
that will be useful to better characterise irradiance 
patterns and produce day-ahead forecasts includes 
use of diffuse irradiance and sub-hourly variability 
of beam irradiance. 
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