Factors influencing apical debris extrusion during endodontic treatment - A review of the literature

Keywords: Apical debris extrusion, canal preparation, glide path preparation, instrument design, irrigation, kinematics


The primary cause of a periapical inflammatory lesion is intra-radicular microbial infection. Prevention and elimination of apical periodontitis is achieved through successful endodontic treatment. Endodontic treatment is designed to maintain and restore the health of the periapical tissues and prevent periapical disease. It may be defined as the combination of mechanical instrumentation of the root canal system with bactericidal irrigation and obturation with an inert material. Technically, the goal of instrumentation and irrigation is to debride and entirely remove infected tissue debris from the root canal system and create a uniform conical shape that allows medicament delivery and adequate obturation. Microbiologically, the goal of instrumentation and irrigation is to eliminate micro-organisms, reduce their survival in the root canal system and neutralise any antigenic potential of the microbial components remaining in the canal.


1. Möller AJR, Fabricius L, Dahlén G, Öhman AE, et al. Influence on periapical tissues of indigenous oral bacteria and necrotic pulp tissue in monkeys. Eur J Oral Sci. 1981; 89(6): 475-84.

2. Berutti E, Negro AR, Lendini M, Pasqualini D. Influence of manual preflaring and torque on the failure rate of ProTaper rotary instruments. J Endod. 2004; 30(4): 228.

3. Ng YL, Mann V, Rahbaran S, Lewsey J, et al. Outcome of primary root canal treatment: systematic review of the literature - Part 2. Influence of clinical factors. Int Endod J. 2008; 41(1): 6-31.

4. Haapasalo M, Endal U, Zandi H, Coil JM. Eradication of endodontic infection by instrumentation and irrigation solutions. Endod Topics. 2005; 10(1): 77-102.

5. Peters OA. Current challenges and concepts in the preparation of root canal systems: A review. J Endod. 2004; 30(8): 559-67.

6. Riitano F. Anatomic Endodontic Technology (AET) - a crown-down root canal preparation technique: basic concepts, operative procedure and instruments. Int Endod J. 2005; 38(8): 575-87.

7. Wang J, Jiang Y, Chen W, Zhu C, et al. Bacterial flora and extraradicular biofilm associated with the apical segment of teeth with post-treatment apical periodontitis. J Endod. 2012; 38(7): 954-9.

8. Kustarcı A, Akpınar KE, Er K. Apical extrusion of intracanal debris and irrigant following use of various instrumentation techniques. Oral Surg, Oral Med, Oral Pathol, Oral Radiol, Endodontol. 2008; 105(2): 257-62.

9. Siqueira JF. Microbial causes of endodontic flare-ups. Int Endod J. 2003; 36(7): 453-63.

10. Siqueira JF, Jr., Rôças IN, Favieri A, Machado AG, et al. Incidence of postoperative pain after intracanal procedures based on an antimicrobial strategy. J Endod. 2002; 28(6): 457-60.

11. Tanalp J, Güngör T. Apical extrusion of debris: a literature review of an inherent occurrence during root canal treatment. Int Endod J. 2014; 47(3): 211-21.

12. Yusuf H. The significance of the presence of foreign material periapically as a cause of failure of root treatment. Oral Surg Oral Med Oral Pathol. 1982; 54(5): 566-74.

13. Sjogren U, Hagglund B, Sundqvist G, Wing K. Factors affecting the long-term results of endodontic treatment. J Endod. 1990; 16(10): 498-504.

14. Siqueira JF. Aetiology of root canal treatment failure: why well-treated teeth can fail. Int Endod J. 2001; 34(1): 1-10.

15. Torabinejad M, Walton RE. Managing endodontic emergencies. J Am Dent Assoc (1939). 1991; 122(5): 99,101,3.

16. Bürklein S, Schäfer E. Apically extruded debris with reciprocating single-file and full-sequence rotary instrumentation systems. J Endod. 2012; 38(6): 850-2.

17. Kirchhoff AL, Fariniuk LF, Mello I. Apical extrusion of debris in flat-oval root canals after using different instrumentation systems. J Endod. 2015; 41(2): 237-41.

18. Beeson TJ, Hartwell GR, Thornton JD, Gunsolley JC. Comparison of debris extruded apically in straight canals: Conventional filing versus profile .04 Taper series 29. J Endod. 1998; 24(1): 18-22.

19. Buldur B, Hascizmeci C, Aksoy S, Nur Aydin M, et al. Apical extrusion of debris in primary molar root canals using mechanical and manual systems. Eur J Paediatr Dent. 2018; 19(1): 16-20.

20. Kherlakian D, Cunha RS, Ehrhardt IC, Zuolo ML, et al. Comparison of the incidence of postoperative pain after using 2 reciprocating systems and a continuous rotary system: A prospective randomized clinical trial. J Endod. 2016; 42(2): 171-6.

21. Nair PNR, Henry SP, Cano V, Vera J. Microbial status of apical root canal system of human mandibular first molars with primary apical periodontitis after “one-visit” endodontic treatment. Oral Surg, Oral Med, Oral Pathol, Oral Radiol Endo-dontol. 2005; 99(2): 231-52.

22. Ruiz-Hubard EE, Gutmann JL, Wagner MJ. A quantitative assessment of canal debris forced periapically during root canal instrumentation using two different techniques. J Endod. 1987; 13(12): 554-8.

23. McKendry DJ. Comparison of balanced forces, endosonic, and step-back filing instrumentation techniques: quantification of extruded apical debris. J Endod. 1990; 16(1): 24-7.

24. Al-Omari MAO, Dummer PMH. Canal blockage and debris extrusion with eight preparation techniques. J Endod. 1995; 21(3): 154.

25. Reddy SA, Hicks ML. Apical extrusion of debris using two hand and two rotary instrumentation techniques. J Endod. 1998; 24(3): 180-3.

26. Del Fabbro M, Afrashtehfar KI, Corbella S, El-Kabbaney A, et al. In vivo and in vitro effectiveness of rotary nickel-titanium vs manual stainless steel instruments for root canal therapy: Systematic review and meta-analysis. J Evid Based Dent Pract. 2018; 18(1): 59-69.

27. Arias A, de la Macorra JC, Azabal M, Hidalgo JJ, et al. Prospective case controlled clinical study of post-endodontic pain after rotary root canal preparation performed by a single operator. J Dent. 2015;43(3): 389-95.

28. Kashefinejad M, Harandi A, Eram S, Bijani A. Comparison of single visit post endodontic pain using Mtwo rotary and hand K-file instruments: A Randomized Clinical Trial. J Dent (Tehran). 2016; 13(1): 10-7.

29. Mollashahi NF, Saberi EA, Havaei SR, Sabeti M. Comparison of postoperative pain after root canal preparation with two reciprocating and rotary single-file systems: A randomized clinical trial. Ir Endod J. 2017; 12(1): 15-9.

30. Çiçek E, Koçak MM, Koçak S, Sag-lam BC E, Koçak MM, Koçak S, Sag-lam BC, et al. Postoperative pain intensity after using different instrumentation techniques: a randomized clinical study. J Appl Oral Sci: revista FOB. 2017; 25(1): 20-6.

31. Gambarini G, Testarelli L, De Luca M, Milana V, et al. The influence of three different instrumentation techniques on the incidence of postoperative pain after endodontic treatment. Ann Stomatol (Roma). 2013; 4(1): 152-5.

32. Neelakantan P, Sharma S. Pain after single-visit root canal treatment with two single-file systems based on different kinematics - a prospective randomized multicenter clinical study. Clin Oral Investig. 2015; 19(9): 2211-7.

33. Relvas JBF, Bastos MMB, Marques AAF, Garrido ADB, et al. Assessment of postoperative pain after reciprocating or rotary NiTi instrumentation of root canals: A randomized, controlled clinical trial. Clin Oral Investig. 2016; 20(8): 1987-93.

34. Jain N, Pawar A, Gupta A. Incidence and severity of post-operative pain after canal instrumentation with reciprocating system, continuous rotary single file system, versus SAF system. Endod practice. 2016; 10: 153-60.

35. Sun C, Sun J, Tan M, Hu B, et al. Pain after root canal treatment with different instruments: A systematic review and meta-analysis. Oral Dis. 2018; 24(6): 908-19.

36. Robinson JP, Lumley PJ, Cooper PR, Grover LM, et al. Reciprocating root canal technique induces greater debris accumulation than a continuous rotary technique as assessed by 3-dimensional micro-computed tomography. J Endod. 2013; 39(8): 1067-70.

37. Alves FRF, Paiva PL, Marceliano-Alves MF, Cabreira LJ, et al. Bacteria and hard tissue debris extrusion and intracanal bacterial reduction promoted by XP-endo Shaper and Reciproc instruments. J Endod. 2018; 44(7): 1173-8.

38. Caviedes-Bucheli J, Castellanos F, Vasquez N, Ulate E, et al. The influence of two reciprocating single-file and two rotary-file systems on the apical extrusion of debris and its biological relationship with symptomatic apical periodontitis. A systematic review and meta-analysis. Int Endod J. 2016; 49(3): 255-70.

39. Tinaz AC, Alacam T, Uzun O, Maden M, et al. The effect of disruption of apical constriction on periapical extrusion. JEndod. 2005; 31(7): 533-5.

40. Tanalp J, Kaptan F, Sert S, Kayahan B, et al. Quantitative evaluation of the amount of apically extruded debris using 3 different rotary instrumentation systems. Oral Surg, Oral Med, Oral Pathol, Oral Radiol, Endodontol. 2006; 101(2): 250-7.

41. Hargreaves K, Berman L, Rotstein I. Cohen's pathways of the pulp. Eleventh edition. ed: Mosby: Elsevier Health Sciences; 2015.

42. Jain P. Current therapy in endodontics. Ames, Iowa: Wiley Blackwell; 2016.

43. Webber J. Shaping canals with confidence: WaveOne GOLD single-file reciprocating system. Roots. 2015(1): 34-40.

44. Sattapan B, Nervo GJ, Palamara JEA, Messer HH. Defects in rotary nickel-titanium files after clinical use. J Endod. 2000; 26(3): 161-5.

45. Sotokawa T. An analysis of clinical breakage of root canal instruments. J Endod. 1988; 14(2): 75-82.

46. Sattapan B, Palamara JEA, Messer HH. Torque during canal instrumentation using rotary nickel-titanium files. J Endod. 2000; 26(3): 156-60.

47. Martín B, Zelada G, Varela P, Bahillo JG, et al. Factors influencing the fracture of nickel-titanium rotary instruments. IntEndod J. 2003; 36(4): 262-6.

48. Gabel WP, Hoen M, Steiman HR, Pink FE, et al. Effect of rotational speed on nickel-titanium file distortion. J Endod. 1999; 25(11): 752-4.

49. Pruett JP, Clement DJ, Carnes DL. Cyclic fatigue testing of nickel-titanium endodontic instruments. J Endod. 1997; 23(2): 77-85.

50. Plotino G, Grande NM, Melo MC, Bahia MG, et al. Cyclic fatigue of NiTi rotary instruments in a simulated apical abrupt curvature. Int Endod J. 2010; 43(3): 226-30.

51. Parashos P, Messer HH. Rotary NiTi instrument fracture and its consequences. J Endod. 2006; 32(11): 1031-43.

52. Tripi TR, Bonaccorso A, Condorelli GG. Cyclic fatigue of different nickel-titanium endodontic rotary instruments. Oral Surg, Oral Med, Oral Pathol, Oral Radiol, Endodont. 2006; 102(4): 106-14.

53. Gambarini G, Grande NM, Plotino G, Somma F, et al. Fatigue resistance of engine-driven rotary nickel-titanium instruments produced by new manufacturing methods. J Endod. 2008; 34(8): 1003-5.

54. De-Deus G, Moreira EJL, Lopes HP, Elias CN. Extended cyclic fatigue life of F2 ProTaper instruments used in reciprocating movement. Int Endod J. 2010; 43(12): 1063-8.

55. You S-Y, Bae K-S, Baek S-H, Kum K-Y, et al. Lifespan of one nickel-titanium rotary file with reciprocating motion in curved root canals. J Endod. 2010; 36(12): 1991-4.

56. Gambarini G, Gergi R, Naaman A, Osta N, et al. Cyclic fatigue analysis of twisted file rotary NiTi instruments used in reciprocating motion. Int Endod J. 2012; 45(9): 802-6.

57. Jonker C, van der Vyver PJ. Reciprocating instruments in endodontics: A review of the literature. S Afr Dent J. 2014; 69(9): 404-9.

58. Webber J, Machtou P, Pertot W, Kuttler S, et al. The WaveOne single-file reciprocating system. Roots. 2011; 1: 28-33.

59. Gupta R, Tomer A, Rohilla S. Single file endodontics: Boon or myth? Asian Pacific J Health Sci. 2016; 3(2): 102-5.

60. Fidler A. Kinematics of 2 reciprocating endodontic motors: The difference between actual and set values. J Endod. 2014; 40(7): 990-4.

61. Bürklein S, Benten S, Schäfer E. Quantitative evaluation of apically extruded debris with different single-file systems: Reciproc, F360 and OneShape versus Mtwo. Int Endod J. 2014; 47(5): 405-9.

62. Bürklein S, Schäfer E. Apically extruded debris with reciprocating single-file and full-sequence rotary instrumentation systems. J Endod. 2012; 38(6): 850-2.

63. Toyoglu M, Altunbas D. Influence of different kinematics on apical extrusion of irrigant and debris during canal preparation using K3XF instruments. J Endod. 2017; 43(9): 1565-8.

64. Surakanti J, Venkata RC, Vemisetty H, Dandolu R, et al. Comparative evaluation of apically extruded debris during root canal preparation using ProTaper, Hyflex and Waveone rotary systems. J Conserv Dent. 2014; 17(2): 129.

65. Arslan H, Dog-anay E, Alsancak M, Çapar ID, et al. Comparison of apically extruded debris after root canal instrumentation using Reciproc instruments with various kinematics. Int Endod J. 2016; 49(3): 307-10.

66. Üstün Y, Çanakçi BC, Dinçer AN, Er O, et al. Evaluation of apically extruded debris associated with several Ni-Ti systems. Int Endod J. 2015; 48(7): 701-4.

67. Dincer AN, Er O, Canakci BC. Evaluation of apically extruded debris during root canal retreatment with several NiTi systems. Int Endod J. 2015; 48(12): 1194-8.

68. Silva EJ, Carapiá MF, Lopes RM, Belladonna FG, et al. Comparison of apically extruded debris after large apical preparations by full-sequence rotary and single-file reciprocating systems. Int Endod J. 2016; 49(7): 700-5.

69. Ozsu D, Karatas E, Arslan H, Topcu M. Quantitative evaluation of apically extruded debris during root canal instrumentation with ProTaper Universal, ProTaper Next, WaveOne, and self-adjusting file systems. Eur J Dent. 2014; 8(4): 504-8.

70. Koçak S, Koçak MM, Sag-lam BC, Türker SA, et al. Apical extrusion of debris using self-adjusting file, reciprocating single-file, and 2 rotary instrumentation systems. J Endod. 2013; 39(10): 1278-80.

71. Vivekanandhan P, Subbiya A, Mitthra S, Karthick A. Comparison of apical debris extrusion of two rotary systems and one reciprocating system. J Conserv Dent. 2016; 19(3): 245-9.

72. Kirchhoff AL, Fariniuk LF, Mello I. Apical extrusion of debris in flat-oval root canals after using different instrumentation systems. J Endod. 2015; 41(2): 237-41.

73. Uslu Gla, Özyürek T, Yılmaz K, Gündog-ar M, et al. Apically extruded debris during root canal instrumentation with Reciproc Blue, HyFlex EDM, and XP-endo Shaper nickel-titanium files. J Endod. 2018; 44(5): 856-9.

74. Salloum S, Torbey C, Bassam S, Dib C. Reciprocal and continuous rotation is two sides of the same coin. J Dent Health Oral Disord Ther. 2018; 9(3).

75. Flanders D. Endodontic patency. How to get it. How to keep it. Why it is so important. N Y State Dent J. 2002; 68: 30-2.

76. Hülsmann M, Schäfer E. Apical patency: Fact and fiction-a myth or a must? A contribution to the discussion. Endo. 2009; 3: 285-307.

77. Mounce RE, Glassman G. Principle driven cleaning, shaping and obturation in orthograde first-time endodontic treatment. Oral Health. 2010; 100(5): 40-9.

78. Paleker F, van der Vyver PJ. Glide path enlargement of mandibular molar canals by using K-files, the ProGlider File, and G-Files: A comparative study of the preparation times. J Endod. 2017; 43(4): 609-12.

79. American Association of Endodontists (AAE). Glossary of endodontic terms. 9th ed: American Association of Endodontists; 2015.

80. Lambrianidis T, Tosounidou E, Tzoanopoulou M. The effect of maintaining apical patency on periapical extrusion. J Endod. 2001; 27(11): 696-8.

81. Izu KH, Thomas SJ, Zhang P, Izu AE, et al. Effectiveness of sodium hypochlorite in preventing inoculation of periapical tissues with contaminated patency files. J Endod. 2004; 30(2): 92-4.

82. Yaylali IE, Demirci GzK, Kurnaz S, Celik G, et al. Does maintaining apical patency during instrumentation increase post-operative pain or flare-up rate after nonsurgical root canal treatment? A systematic review of randomized controlled trials. J Endod. 2018; 44(8):1228-36.

83. Hartmann RC, Peters OA, de Figueiredo JAP, Rossi-Fedele G. Association of manual or engine-driven glide path preparation with canal centring and apical transportation: a systematic review. Int Endod J. 2018; 51(11): 1239-52.

84. West JD. The endodontic glidepath: "Secret to rotary safety". Dent Today. 2010; 29(9): 90-3.

85. Elnaghy AM, Elsaka SE. Evaluation of root canal transportation, centering ratio, and remaining dentin thickness associated with ProTaper Next instruments with and without glide path. J Endod. 2014; 40(12): 2053-6.

86. Rodrigues E, De-Deus G, Souza E, Silva EJ. Safe mechanical preparation with reciprocation movement without glide path creation: result from a pool of 673 root canals. Braz Dent J. 2016; 27(1): 22-7.

87. Patiño PV, Biedma BM, Liébana CR, Cantatore G, et al. The influence of a manual glide path on the separation rate of NiTi rotary instruments. J Endod. 2005; 31(2): 114-6.

88. Cassim I, van der Vyver PJ. The importance of glide path preparation in endodontics: a consideration of instruments and literature. S Afr Dent J. 2013; 68(7): 324-7.

89. Khatavkar R, SH. Importance of patency in endodontics. Endodontology. 2010; 22: 85-91.

90. Seltzer S, Naidorf IJ. Flare-ups in endodontics: I. Etiological factors. J Endod. 1985; 11(11): 472-8.

91. Topçuog-lu HS, Düzgün S, Akpek F, Topçuog-lu G, et al. Influence of a glide path on apical extrusion of debris during canal preparation using single-file systems in curved canals. Int Endod J. 2016; 49(6): 599-603.

92. Gunes B, Yeter Y. Effects of different glide path files on apical debris extrusion in curved root canals. J Endod. 2018; 44(7): 1191-4.

93. Basmadjian-Charles CL, Farge P, Bourgeois DM, Lebrun T. Factors influencing the long-term results of endodontic treatment: a review of the literature. Int Dent J. 2002; 52(2): 81-6.

94. Plotino G, Özyürek T, Grande NM, Gündog-ar M. Influence of size and taper of basic root canal preparation on root canal cleanliness: A scanning electron microscopy study. Int Endod J. 2019; 52(3): 343-51.

95. Grande NM, Ahmed HMA, Cohen S, Bukiet F, et al. Current assessment of reciprocation in endodontic preparation: A comprehensive review - Part I: Historic perspectives and current applications. J Endod. 2015; 41(11): 1778-83.

96. Tinoco JM, De-Deus G, Tinoco EM, Saavedra F, et al. Apical extrusion of bacteria when using reciprocating single-file and rotary multifile instrumentation systems. Int Endod J. 2014; 47(6): 560-6.

97. Zupanc J, Vahdat-Pajouh N, Schäfer E. New thermomechanically treated NiTi alloys - a review. Int Endod J. 2018; 51(10): 1088-103.

98. Goo H-J, Kwak SW, Ha J-H, Pedullà E, et al. Mechanical properties of various heat-treated nickel-titanium rotary instruments. J Endod. 2017; 43(11): 1872-7.

99. Ha JH, De-Deus G, Versluis A, Kwak SW, et al. Safe pseudo-elastic limit range under torsional loading with Reciproc Blue. Int Endod J. 2019; 52(2): 244-9.

100. You S-Y, Kim H-C, Bae K-S, Baek S-H, et al. Shaping ability of reciprocating motion in curved root canals: A comparative study with micro-computed tomography. J Endod. 2011; 37(9): 1296-300.

101. Varela-Patino P, Ibanez-Parraga A, Rivas-Mundina B, Cantatore G, et al. Alternating versus continuous rotation: A comparative study of the effect on instrument life. J Endod. 2010; 36(1): 157-9.

102. Yared G. Canal preparation using only one Ni-Ti rotary instrument: preliminary observations. Int Endod J. 2008; 41(4): 339-44.

103. Gavini G, Caldeira CL, Akisue E, Candeiro GTdM, et al. Resistance to flexural fatigue of reciproc R25 files under continuous rotation and reciprocating movement. J Endod. 2012; 38(5): 684-7.

104. Perez-Higueras JJ, Arias A, de la Macorra JC, Peters OA. Differences in cyclic fatigue resistance between ProTaper Next and ProTaper Universal instruments at different levels. J Endod. 2014; 40(9): 1477-81.

105. Paqué F, Zehnder M, De-Deus G. Microtomography-based comparison of reciprocating single-file F2 ProTaper technique versus rotary full sequence. J Endod. 2011; 37(10): 1394-7.

106. Espir CG, Nascimento-Mendes CA, Guerreiro-Tanomaru JM, Freire LG, et al. Counterclockwise or clockwise reciprocating motion for oval root canal preparation: A micro-CT analysis. Int Endod J. 2018; 51(5): 541-8.

107. Siddique R, Nivedhitha MS. Effectiveness of rotary and reciprocating systems on microbial reduction: A systematic review. J Conserv Dent. 2019; 22(2): 114-22.

108. Karatas E, Arslan H, Kırıcı D, Alsancak M, Çapar ID. Quantitative evaluation of apically extruded debris with Twisted File Adaptive instruments in straight root canals: Reciprocation with different angles, adaptive motion and continuous rotation. Int Endod J. 2016; 49(4): 382-5.

109. Arslan H, Doganay E, Alsancak M, Çapar ID, Karatas E, Gündüz HA. Comparison of apically extruded debris after root canal instrumentation using Reciproc instruments with various kinematics. Int Endod J. 2016; 49(3): 307-10.

110. Paqué F, Boessler C, Zehnder M. Accumulated hard tissue debris levels in mesial roots of mandibular molars after sequential irrigation steps. Int Endod J. 2011; 44(2).

111. Gizem Demiray K, Ahmet G, Bülent A, Güven K. Comparison of the smear layer- and debris-removal abilities and the effects on dentinal microhardness of 5% and 17% EDTA solutions used as final irrigants: In vitro study. Acta Odontol Turc. 2016; 33(2): 63-8.

112. Kim H-J, Park S-J, Park S-H, Hwang Y-C, et al. Efficacy of flowable gel-type EDTA at removing the smear layer and inorganic debris under manual dynamic activation. J Endod. 2013; 39(7): 910-4.

113. Gupta J, Nikhil V, Jha P. Corelation between machine-assisted endodontic irrigant agitation and apical extrusion of debris and irrigant: A laboratory study. Sci World J. 2014; 2014: 346184. DOI: 10.1155/2014/346184.

114. Baker NA, Eleazer PD, Averbach RE, Seltzer SP. Scanning electron microscopic study of the efficacy of various irrigating solutions. J Endod. 1975; 1(4): 127-35.

115. Hinrichs RE, Walker WA, 3rd, Schindler WG. A comparison of amounts of apically extruded debris using handpiece-driven nickel-titanium instrument systems. J Endod. 1998; 24(2): 102-6.

116. Ferraz CCR, Gomes NV, Gomes BPFA, Zaia AA, et al. Apical extrusion of debris and irrigants using two hand and three engine-driven instrumentation techniques. Int Endod J. 2001; 34(5): 354-8.

117. Myers GL, Montgomery S. A comparison of weights of debris extruded apically by conventional filing and canal master techniques. J Endod. 1991; 17(6): 275-9.

118. Johnson BR, Remeikis NA. Effective shelf-life of prepared sodium hypochlorite solution. J Endod. 1993; 19(1): 40-3.

119. Grossman LI, Meiman BW. Solution of pulp tissue by chemical agents. J Am Dent Assoc. 1941; 28(2): 223-5.
120. Buck RA, Eleazer PD, Staat RH, Scheetz JP. Effectiveness of three endodontic irrigants at various tubular depths in
human dentin. J Endod. 2001; 27(3): 206-8.

121. Zehnder M. Root canal irrigants. J Endod. 2006; 32(5): 389-98.

122. Violich D, Chandler N. The smear layer in endodontics - a review. Int Endod J. 2010; 43: 2-15.

123. Putzer P, Hoy L, Günay H. Highly concentrated EDTA gel improves cleaning efficiency of root canal preparation in vitro. Clin Oral Investig. 2008; 12(4): 319-24.

124. Cruz A, Vera J, Gascón G, Palafox-Sánchez CA, et al. Debris remaining in the apical third of root canals after chemomechanical preparation by using sodium hypochlorite and glyde: An in vivo study. J Endod. 2014; 40(9): 1419-23.

125. De-Deus G, Marins J, de Almeida Neves A, Reis C, et al. Assessing accumulated hard-tissue debris using micro-computed tomography and free software for image processing and analysis. J Endod. 2014; 40(2): 271-6.
  • Abstract 0
  • PDF 0
Views and downloads are with effect from 11 January 2018